Как доказать что функция необратима

Обратимые и обратные функции

Обратимой называется функция в которой произвольному значению функции соответствует единственное значение аргумента.

Примеры обратимых функций:

Исходная обратимая функция и функция, полученная из нее путем замены x на y и y на x, называются обратными.

Примеры обратных функций:

Однако, если рассматривать данную функцию только на множестве положительных чисел, она будет обратимой:

Графики функций будут симметричны относительно прямой y=x:

Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратима

Функция y=arcsin(x)

Поскольку функция y=sin(x) является периодической, она не является обратимой.

Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратима

Для построения функции, обратимой y=sin(x), необходимо взять один из полупериодов функции, обычно это отрезок [-π/2;π/2], на котором функция обратима.

Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратима

График функции y=arcsin(x):

Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратима

Например, чтобы найти arcsin(1), можно воспользоваться равенством 1=sin(y). Угол на отрезке [-π/2;π/2], синус которого равняется 1, будет равен 90° или π/2.

Функция y=arccos(x)

Поскольку функция y=cos(x) является периодической, она не является обратимой.

Для построения функции, обратимой y=cos(x), необходимо взять один из полупериодов функции, обычно это отрезок [0;π], на котором функция обратима.

График функции y=arccos(x):

Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратима

Например, чтобы найти arccos(1), можно воспользоваться равенством 1=cos(y). Угол на отрезке [0;π], косинус которого равняется 1, будет равен 0.

Функция y=arctg(x)

Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратима

Поскольку функция y=tg(x) является периодической, она не является обратимой.

Для построения функции, обратимой y=tg(x), необходимо рассматривать тангенсоиду на отрезке [-π/2;π/2], на котором функция обратима.

График функции y=arctg(x):

Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратима

Функция y=arcctg(x)

Поскольку функция y=ctg(x) является периодической, она не является обратимой.

Для построения функции, обратимой y=ctg(x), необходимо рассматривать котангенсоиду на отрезке [0;π], на котором функция обратима.

График функции y=arcctg(x):

Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратима

Если вам понравился сайт, будем благодарны за его популяризацию 🙂 Расскажите о нас друзьям на форуме, в блоге, сообществе. Это наша кнопочка:

Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратима

Код кнопки: Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратима
Политика конфиденциальности Об авторе

Источник

АЛГОРИТМ СОСТАВЛЕНИЯ ОБРАТНОЙ ФУНКЦИИ.

Лекция по теме «Обратная функция»

ПОНЯТИЕ ОБРАТИМОЙ ФУНКЦИИ.

ДОСТАТОЧНОЕ УСЛОВИЕ ОБРАТИМОСТИ.

На рисунках приведены две функции, у которых области определения и множества значений одинаковы, но одна из функций монотонна, а другая нет (рис.1). Таким образом, функция Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратимаобладает свойством, не характерным для функции Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратима: какое бы число Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратимаиз множества значения функции f(x) ни взять, оно является значением функции только в одной точке Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратима. Говорят, что такая функция обратима.

Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратима

У функции Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратимазначение Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратимаможно получить сразу в трех точках Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратима. Поэтому такая функция не обратима.

Определение 1. Функцию Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратиманазывают обратимой, если любое свое значение она принимает только в одной точке множества X.

Теорема. Если функция Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратимамонотонна на множестве X, то она обратима.

Попробуйте самостоятельно определить, какая из предложенных функций обратима?:

а) Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратима

б) Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратима

а) – функция и возрастает и убывает, значит, она немонотонна, поэтому необратима

б) – функция убывает, значит, она монотонна, поэтому обратима

в) – линейная функция, k=2, то есть функция возрастает, значит, она монотонна, поэтому обратима

г) – квадратичная функция, график – парабола, ветви вниз, то есть функция и возрастает и убывает, значит, она немонотонна, поэтому необратима

Замечание. Монотонность функции, является достаточным условием существования обратной функции. Но оно не является необходимым условием.

Например, мы можем взять немонотонную функцию и рассмотреть ее только на одном промежутке, где она только возрастает или только убывает, тогда условие обратимости будет выполняться. Например, функция Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратимапри Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратимабудет возрастающей функцией, поэтому при таких значениях х она обратима.

ПОНЯТИЕ ОБРАТНОЙ ФУНКЦИИ.

АЛГОРИТМ СОСТАВЛЕНИЯ ОБРАТНОЙ ФУНКЦИИ.

Алгоритм составления обратной функции для функции y=f(x), Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратима.

Пример 1. Показать, что для функции y=2x-5 существует обратная функция, и найти ее аналитическое выражение.

Решение. Линейная функция y=2x-5 определена на R, возрастает на R и область ее значений есть R. Значит, обратная функция существует на R. Чтобы найти ее аналитическое выражение, решим уравнение Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратимаотносительно х;

Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратима

Переобозначим переменные, получим искомую обратную функцию

Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратимаОна определена и возрастает на R.

Пример 2. Показать, что для функции Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратимапри Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратимасуществует обратная функция, и найти ее аналитическое выражение.

Решение. Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратима– квадратичная функция. При Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратимафункция непрерывна, монотонно возрастает в своей области определения, следовательно, она обратима. Найдем ее:

Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратима

Так как по условию Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратима, то Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратима

Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратима– обратная функция для Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратима

Источник

Алгебра

А Вы уже инвестируете?
Слышали про акцию в подарок?

Зарегистрируйся по этой ссылке
и получи акцию до 100.000 руб

План урока:

Взаимно обратные функции

Напомним, что любая функция у = у(х) представляет собой некоторое правило, которое устанавливает соответствие между значениями х и значениями у. В частности, функция у = х 2 ставит в соответствие каждому действительному числу его квадрат. Приведем таблицу, содержащую значения этой функции для целых аргументов от – 2 до 2:

Но если есть соответствие между х и у, то должно существовать и обратное соответствие между у и х. Действительно, строки таблички можно «перевернуть» и она примет следующий вид:

Мы получили два взаимно обратных соответствия. Однако второе из них функцией не является, ведь функция должна ставить в соответствие своему аргументу только одно значение функции. Однако, судя по второй таблице, числу у = 1 соответствует сразу два х: х = – 1 и х = 1. В таком случае математики говорят, что исходная функция у = х 2 является необратимой.

Теперь «перевернем таблицу» и получим следующее:

Мы видим, что как каждому значению х соответствует единственное значение у, так и наоборот, каждому у соответствует единственное значение х. В математике для подобных соответствий используют понятие взаимно-однозначное соответствие.

Для лучшего понимания этого определения отвлечемся от чисел. Пусть в футбольном чемпионате играет несколько команд. Они образуют множество Х команд-участниц соревнования. За множество У примем отдельных футболистов, выступающих на турнире. Каждому игроку соответствует единственная команда, за которую он выступает, но обратное неверно – каждой команде соответствует несколько игроков. Значит, это пример соответствия, не являющегося взаимно-однозначным.

Пусть тренеры команд образуют множество Z. Каждый тренер тренирует лишь одну команду, и наоборот, каждую команду тренирует единственный тренер. Значит, между множествами X и Z есть взаимно-однозначное соответствие.

Вернемся к функциям. Если соответствие, которое задает функция у = у(х), является взаимно-однозначным, то каждому значению у будет соответствовать единственное значение х. Значит, существует некоторая функция х = х(у). Пары функций у = у(х) и х = х(у) называются взаимно обратными функциями.

Ещё раз скажем, что не для любой функции существует обратная функция, ведь не все они определяют взаимно-однозначное соответствие. Если всё же для у = у(х) есть обратная функция х = х(у), то у = у(х) называют обратимой функцией.

Покажем, какие функции являются обратными, на примере пары у = 4х + 12 и у = 0,25х – 3. Возьмем, например, значение х = 5 и подставим его в у = 4х + 12:

у = 4х + 12 = 4•5 + 12 = 32

Получили 32. Подставим это число в обратную функцию:

у = 0,25х – 3 = 0,25•32 – 3 = 8 – 3 = 5

Получили именно то число, которое первоначально подставили в первую функцию! Возьмем другое произвольное число, например, 10, и подставим его в у = 4х + 12:

у = 4•10 + 12 = 40 + 12 = 52

Полученный результат подставляем в у = 0,25х – 3:

у = 0,25•52 – 3 = 13 – 3 = 10

Снова получили исходное число! Выберете сами ещё несколько произвольных чисел и убедитесь, что и с ними будет происходить то же самое.

Посмотрим, как получить обратную функцию. Пусть дана зависимость

Это, по сути, выражение для вычисления у. Выразим из него х:

Получили зависимость х от у. Чтобы мы получили из нее обратную функцию, необходимо просто поменять местами буквы х и у:

Убедитесь самостоятельно на нескольких примерах, что полученная функция обратна функции у = 5х + 20.

Пример. Найдите функцию, обратную зависимости у = 1/(х + 7).

Решение. Умножим обе части равенства у = 1/(х + 7) на (х + 7):

Далее поделим обе части нау:

Перенесем семерку вправо и получим формулу для вычисления х:

Для получения обратной функции просто меняем х и у местами:

Предположим, у нас есть у= у(х), чей график нам известен, и необходимо построить график взаимно обратной функции. Как это сделать? Если одна точка на координатной прямой имеет координаты (a; b) и принадлежит функции у = у(х), то, обратной функции должна принадлежать точка (b; a):

Эти точки симметричны относительно прямой у = х:

Поэтому для построения графика обратной функции достаточно симметрично отобразить его относительно прямой у = х.

С помощью этого правила построим график функции, обратной у = х 3 :

Практика показывает, что не все школьники (да и взрослые тоже) понимают, что означает симметричность относительно прямой у = х, ведь эта прямая наклонена. Здесь требуется довольно высокий уровень пространственного мышления. Куда проще понять симметрию относительно вертикальной или горизонтальной линии. Поэтому мы покажем ещё один способ построения обратных функций, который состоит из двух этапов.

Он заключается в том, что сначала график отображают симметрично относительно вертикальной оси Оу:

На втором этапе полученное отображение поворачивают по часовой стрелке относительно начала координат:

Заметим важное правило. При построении обратной функции области определения и области значений меняются местами. Действительно, если какое-то число входит в область значения функции, то это значит, что его можно подставить в обратную функцию. Но это в свою очередь означает, что она входит в область определения обратной функции. Проиллюстрируем это правило картинкой:

До сих пор мы рассматривали способы построения обратных функций, но ведь в самом начале урока говорилось о том, что обратная функция существует не всегда. Действительно, попытаемся построить обратную функцию для у = х 2 :

Получилась та же парабола, но «лежащая на боку». Является ли она графиком функции? Нет. На рисунке проведена вертикальная линия, которая пересевает график в двух точках. Это значит, что одному значению х (в данном случае х = 5) соответствует сразу два значения у. Но подобное соответствие не является функцией. Это значит, что у = х 2 – необратимая функция.

Есть ли какой-то признак, позволяющий быстро сказать, является ли функция обратимой? Оказывается, есть. Если функция строго монотонна (то есть либо только возрастает, либо только убывает), то это гарантирует, что она ещё и обратима. Покажем это с помощью рисунков. Известно, что каждому значению строго монотонной функции соответствует лишь один аргумент. С точки зрения геометрии это означает, что любая горизонтальная линия пересекает монотонную функцию не более чем в одной точке:

К слову, это свойство мы использовали для решения некоторых уравнений. Теперь отобразим график симметрично прямой у = х, причем также отобразим и горизонтальные линии:

Горизонтальные линии превратились в вертикальные, при этом они всё также пересекают график не более чем в одной точке. Но это как раз и означает, что график задает функцию, а не какое-то другое соответствие. Отсюда делаем вывод – любая строго монотонная функция обратима.

Можно сделать вывод – обратимость функции зависит не только от самого вида функции, но и от того, на какой области определения ее рассматривают.

Кубический корень

Ранее мы изучили понятие квадратного корня. Напомним, что извлечение квадратного корня – это операция, обратная возведению в квадрат. Другими словами, функция

Можно дать и другое определение, не использующее понятие функции:

Например, мы знаем, что число 5 в кубе равно 125:

Это значит, что кубический корень из 125 равен 5.

Для обозначения кубического корня используют тот же знак радикала, что и для квадратного корня. Чтобы их отличать друг от друга, в случае с кубическим корнем перед знаком радикала ставят тройку:

Заметим важное отличие кубического и квадратного корня. Мы привыкли, что под знаком радикала не должно стоять отрицательное число. Но кубический корень из отрицательного числа извлечь можно. Например, мы знаем, что (– 6) 3 = – 216. Отсюда следует, что

График кубического корня можно получить, просто построив функцию, обратную у = х 3 :

Корни n-ой степени

Аналогично кубическому корню можно ввести понятие и корня произвольной n-ой степени.

Для обозначения корня n-ой степени используется знак радикала, перед которым стоит число n. Приведем пример. Мы знаем, что 2 5 = 32. Это значит, что корень 5-ой степени из 32 равен 2:

Если же показателем n является нечетное число, то график у = х n будет схож с графиком у = х 3 :

Если n нечетно, то корень можно извлечь и из отрицательного числа. Так, известно, что (– 3) 7 = – 2187. Это значит, что корень седьмой степени из (– 2187) равен (– 3):

Очевидно, что корень получится отрицательным, если под ним стоит отрицательное число. Если же подкоренное выражение положительно, то и сам корень положителен. Более того, можно заметить, что корень из отрицательного числа равен корню из противоположенного ему положительного числа, взятого со знаком минус:

В общем случае графики всех корней нечетных степеней будут похожи на график кубического корня:

При четном значении n корень n-ой степени нельзя извлечь из отрицательного числа. Действительно, попробуем возвести в четную степень положительное число:

Получили другое положительное число. Теперь попробуем возвести в четную степень отрицательное число:

(– 5) 4 = (– 5)•(– 5)•(– 5)•(– 5) = 625

Результат снова положительный! Минусы у отрицательных чисел «сократились» друг с другом, и получилось положительное произведение. Но раз при возведении в четную степень всегда получается неотрицательное число, значит, и под четным корнем должно также стоять неотрицательное число. Поэтому подкоренное выражение не может быть отрицательным.

Арифметические корни n-ой степени

Мы видим, что складывается не очень удобная для математиков ситуация: корни n-ой степени из отрицательного числа можно извлечь, если n – нечетное число, но при четном n такая операция уже недопустима. Это порождает много проблем при работе с корнями. Для устранения этих проблем вводится понятие арифметического корня степени n. Его особенность в том, что он всегда извлекается из неотрицательного числа и сам принимает значения, не меньшие нуля.

Заметим, что корень нечетной степени из отрицательного числа всегда можно выразить с помощью арифметического корня, просто вынеся знак минус из-под корня:

Поэтому арифметических корней вполне хватает для работы в любых ситуациях.

Определение корня можно записать в более формализованном виде:

Проиллюстрируем использование этой формулы:

Свойства корня n-ой степени

Далее рассмотрим некоторые свойства корней степени n, помогающие вычислять их значения. Сразу скажем, что они во многом идентичны свойствам квадратного корня.

Для доказательства этого свойства правую часть в n-ую степень:

Приведем примеры использования этого свойства:

Отсюда следует, что множители можно вносить и выносить из-под знака корня:

Следующее свойство помогает извлекать корни из дробей.

Доказывается это свойство так же, как и первое. Возведем в n-ую степень правую часть формулы:

Продемонстрируем применение доказанного тождества:

Заметим, что если под корнем находится степень какого-то числа, то ее вынести из-под радикала:

Доказать это можно, разложив число a m в произведение:

Всего справа стоит m множителей. Теперь извлечем корень степени n:

Справа всё те же m множителей, а потому

Таким образом, получаем, что

Покажем несколько примеров использования этого правила:

Далее посмотрим, как извлекать корень из другого корня.

Для доказательства возведем корень в левой части формулы в степень mn:

По определению корня получаем, что

Проиллюстрируем использование данного правила:

Последнее свойство, которое нам осталось изучить, называют основным свойством корня.

Доказательство записывается всего в одну строчку:

Степени в корне и под ним можно «сокращать»:

Сравнение корней

Естественно, что большинство корней – это не целые, а иррациональные числа, которые довольно сложно вычислять. Тем не менее есть несколько правил, которые помогают оценивать их значение. Из графиков корней видно, что все они являются возрастающими функциями. Поэтому, если необходимо сравнить два корня одной степени, достаточно сравнить их подкоренные выражения. Тот корень, у которого под корнем стоит большее число, и будет больше

В частности, справедливы неравенства:

В случае, если у корней различаются степени, следует постараться преобразовать их так, чтобы степени всё же совпали.

Пример. Сравните числа

Решение. Преобразуем первое число, чтобы у нас получился корень шестой степени:

Так как 121 > 119, то и

Пример. Сравните числа

Решение. Сначала избавимся от вложенных корней:

Получили два кубических корня. Меньше тот из них, у которого под радикалом меньшее число:

Пример. Сравните корни

Решение. Имеем корни 7-ой и 4-ой степени. К какой одинаковой степени можно привести оба корня? Это число 28, ведь оно представляет собой произведение 7•4:

Источник

Взаимно обратные функции, основные определения, свойства, графики

Понятие обратной функции

Для чего вообще нам нужно понятие обратных функций?

Нахождение взаимно обратных функций

Обратными по отношению друг к другу будут, например, функции арккосинуса и косинуса.

Разберем несколько задач на нахождение функций, обратных заданным.

Решение

Обе взаимно обратные функции можно отобразить на графике следующим образом:

Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратима

Возьмем пример, в котором нужно найти логарифмическую функцию, обратную заданной показательной.

Решение

В итоге у нас вышли показательная и логарифмическая функции, которые будут взаимно обратными друг другу на всей области определения.

На графике обе функции будут выглядеть так:

Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратима

Основные свойства взаимно обратных функций

a r c sin sin 7 π 3 = a r c sin sin 2 π + π 3 = = п о ф о р м у л е п р и в и д е н и я = a r c sin sin π 3 = π 3

Графики взаимно обратных функций

На графике они будут выглядеть следующим образом (случаи с положительным и отрицательным коэффициентом a):

Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратима

Графики для функций с a > 1 и a 1 будут выглядеть так:

Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратима

Если нам нужно построить график главной ветви синуса и арксинуса, он будет выглядеть следующим образом (показан выделенной светлой областью):

Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратима

График главной ветви косинуса и арккосинуса выглядит так:

Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратима

График главной ветви арктангенса и тангенса:

Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратима

График главной ветви арккотангенса и котангенса будет таким:

Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратима

Как доказать что функция необратима. Смотреть фото Как доказать что функция необратима. Смотреть картинку Как доказать что функция необратима. Картинка про Как доказать что функция необратима. Фото Как доказать что функция необратима

Это все свойства обратных функций, о которых мы хотели бы вам рассказать.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *