Как доказать что накрест лежащие углы равны
Теорема о равенстве накрест лежащих углов
Урок 17. Геометрия 7 класс
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Теорема о равенстве накрест лежащих углов»
В формулировке любой теоремы можно выделить две части: условие и заключение. Условие теоремы – это то, что дано, а заключение – это то, что надо доказать.
Например, рассмотрим один из признаков параллельности прямых:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
Здесь условие утверждения: если при пересечении двух прямых секущей накрест лежащие углы равны. А заключение: прямые параллельны.
Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны.
Пусть прямые а и b параллельны и пересечены секущей CD. Доказать, что накрест лежащие углы 1 и 2 равны.
Предположим, что углы 1 и 2 не равны. Тогда от луча CD отложим ∠ЕCD=∠2 так, чтобы ∠ЕCD и ∠2 были накрест лежащими углами при пересечении прямых СЕ и b секущей CD.
По построению эти накрест лежащие углы равны, а поэтому прямая CE параллельна прямой b. Получили, что через точку С проходят две прямые (а и CЕ) параллельные прямой b. А это противоречит аксиоме параллельности прямых. Следовательно, предположение неверно и угол ∠1=∠2. Что и требовалось доказать.
Прямые АВ и CD параллельны. Отрезок АВ=СD. Доказать, что прямая АС параллельна прямой BD.
Рассмотрим треугольник ABD и треугольник ACD.
То есть ∠CAD=∠BDA. А эти углы являются накрест лежащими при прямых AC и BD и секущей AD. Это означает, что прямые AC и BD параллельны. Что и требовалось доказать.
На рисунке ∠CBD=∠ADB. Доказать, что ∠ВСА=∠CAD.
∠ВСА и ∠CAD являются накрест лежащими при параллельных прямых AD и BC и секущей АС, а следовательно, они равны. Что и требовалось доказать.
Отметим, что если доказана какая-либо теорема, то это не означает, что обратная ей теорема верна.
Например, если углы вертикальные, то они равны. А вот если углы равны, то это ещё не означает, что они вертикальные.
Планиметрия. Страница 2
1.Параллельность прямых
Теорема: если две прямые параллельны третьей прямой, то они параллельны.
Доказательство. Пусть даны две прямые а и b. Допустим, что они не параллельны между собой. (Рис.1) Тогда они пересекаются в некоторой точке С. Следовательно, через точку С проходят две прямые, параллельные прямой с. А это невозможно согласно аксиоме: через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной. Следовательно, прямые а и b не пересекаются. Они параллельны.
Рис.1 Теорема. Параллельность прямых.
2.Признаки параллельности прямых
Теорема. Если внутренние накрест лежащие углы равны или сумма внутренних односторонних углов равна 180 градусов, то прямые параллельны.
Доказательство. Пусть даны две прямые a и b, которые образуют с секущей АВ внутренние накрест лежащие углы (Рис. 2 а). Допустим, что прямые a и b не параллельны. Тогда они пересекаются в одной точке С. Секущая АВ разбивает плоскость на две полуплоскости. И, следовательно, точка С лежит в одной из них и образует треугольник АВС. Сторона АС принадлежит прямой а. Сторона ВС принадлежит прямой b. (Рис. 2 б)
8. Пример 1
Даны прямая а и точка С, не лежащая на этой прямой. Необходимо доказать, что через точку С можно провести прямую, параллельную прямой а. (Рис.8)
Доказательство:
Проведем прямую b, параллельную прямой а. Тогда, согласно аксиоме 9, (через точку, не лежащую на данной прямой, можно провести только одну прямую) проведем прямую с через точку С, параллельную прямой b.
Таким образом, получается, что прямая с параллельна прямой b, и прямая a также параллельна прямой b по построению. Следовательно, по теореме о двух прямых, параллельных третьей прямой, имеем, что две прямые a и c параллельны прямой b и, следовательно, они (прямые а и с) параллельны. Т.е. через точку С можно провести прямую, параллельную прямой а.
Пример 2
Даны две параллельные прямые а и b, и секущая с. Докажите, что биссектрисы внутренних накрест лежащих углов, образованных этими прямыми, параллельны (Рис.9)
Доказательство:
Таким образом, так как углы α и β равны, то и углы α/2 и β/2 также равны. А если углы α/2 и β/2 равны, то они являются внутренними накрест лежащими углами, между секущей с и прямыми, на которых лежат лучи d1 и d2, и согласно теореме: признак параллельности прямых, лучи d1 и d2 лежат на параллельных прямых.
Рис.9 Задача. Даны две параллельные прямые а и b и секущая с.
Пример 3
Один из углов равнобедренного треугольника АВС равен 100° (Рис.10). Найти остальные углы треугольника.
Решение:
Так как сумма углов треугольника составляет 180°, а два угла у равнобедренного треугольника равны, то они не могут равняться 100°. Следовательно, углы при вершинах А и С равны, а угол при вершине В = 100°.
Отсюда следует, что можно составить соотношение:
Ответ: углы равнобедренного треугольника составляют: 100°, 40°, 40°.
Рис.10 Задача. Найти углы треугольника.
Пример 4
Сумма внешних углов треугольника АВС при вершиах А и В равна 240° (Рис.11). Найдите угол С треугольника АВС.
Решение:
Так как сумма углов α + β + α1 + β1 = 360°, а
α1 + β1 = 240° по условию задачи, то
А так как сумма углов треугольника составляет 180°, то
И следовательно, γ = 60°
Ответ: угол при вершине С = 60°.
Рис.11 Задача. Найти угол треугольника.
Пример 5
В равнобедренном треугольнике АВС с основанием АС проведена биссектриса AD. Угол при вершине В составляет 36° (Рис.12). Докажите, что треугольники CDA и ADB равнобедренные.
Доказательство:
Так как по условию задачи треугольник АВС равнобедренный, то углы при вершинах А и С равны:
α = 72°, а так как AD биссектриса, то ∠BAD = ∠DAC, т.е.
Следовательно, треугольник ADB равнобедренный. Углы при вершинах А и В равны 36°.
Теперь рассмотрим треугольник ADC. Угол λ равен:
Таким образом, треугольник ADC равнобедренный. Углы при вершинах С и D равны 72°.
Углы при параллельных прямых и секущей. Вертикальные, смежные, односторонние, соответственные, накрест лежащие углы
Углы и — вертикальные. Очевидно, вертикальные углы равны, то есть
Соответственные углы равны, то есть
Накрест лежащие углы равны, то есть
Чтобы применять все эти факты в решении задач ЕГЭ, надо научиться видеть их на чертеже. Например, глядя на параллелограмм или трапецию, можно увидеть пару параллельных прямых и секущую, а также односторонние углы. Проведя диагональ параллелограмма, видим накрест лежащие углы. Это — один из шагов, из которых и состоит решение.
Ты нашел то, что искал? Поделись с друзьями!
Напомним, что биссектриса угла — это луч, выходящий из вершины угла и делящий угол пополам.
Периметр параллелограмма — это сумма всех его сторон, то есть
Мы знаем, что равнобедренной (или равнобокой) называется трапеция, у которой боковые стороны равны. Следовательно, равны углы при верхнем основании, а также углы при нижнем основании.
Углы и — односторонние при параллельных прямых и секущей, следовательно,
Параллелограмм, его свойства и признаки с примерами решения
Параллелограммом называют четырехугольник, у которого противолежащие стороны попарно параллельны.
На рисунке 16 изображен параллелограмм
Рассмотрим свойства параллелограмма.
1. Сумма двух любых соседних углов параллелограмма равна 180°.
Действительно, углы и
параллелограмма
(рис. 16) являются внутренними односторонними углами для параллельных прямых
и
и секущей
Поэтому
Аналогично это свойство можно доказать для любой другой пары соседних углов параллелограмма.
2. Параллелограмм является выпуклым четырехугольником.
3. В параллелограмме противолежащие стороны равны и противолежащие углы равны.
Доказательство:
Диагональ разбивает параллелограмм
на два треугольника
и
(рис. 17).
-их общая сторона,
и
(как внутренние накрест лежащие углы для каждой из пар параллельных прямых
и
и
и секущей
Тогда
(по стороне и двум прилежащим углам). Откуда,
и
(как соответственные элементы равных треугольников). Так как
то
4. Периметр параллелограмма
5. Диагонали параллелограмма точкой пересечения делятся пополам.
Доказательство:
Пусть — точка пересечения диагоналей
и
параллелограмма
(рис. 18).
(как противолежащие стороны параллелограмма),
(как внутренние накрест лежащие углы для параллельных прямых
и
и секущих
и
соответственно). Следовательно,
(по стороне и двум прилежащим углам). Тогда
(как соответственные стороны равных треугольников).
Пример:
Дано: параллелограмм,
— биссектриса угла
(рис. 19). Найдите:
Решение:
1)
2) (как внутренние накрест лежащие углы для параллельных прямых
и
и секущей
3) (по условию), тогда
Тогда
— равнобедренный (по признаку равнобедренного треугольника),
4)
Высотой параллелограмма называют перпендикуляр, проведенный из любой точки стороны параллелограмма к прямой, содержащей противолежащую сторону.
На рисунке 20 — высота параллелограмма,
Из каждой вершины параллелограмма можно провести две высоты. Например, на рисунке 21 и
— высоты параллелограмма, проведенные соответственно к сторонам
и
Рассмотрим признаки параллелограмма.
Теорема (признаки параллелограмма). Если в четырехугольнике: 1) две стороны параллельны и равны, или 2) противолежащие стороны попарно равны, или 3) диагонали точкой пересечения делятся пополам, или 4) противолежащие углы попарно равны, — то четырехугольник является параллелограммом.
Доказательство:
1) Пусть в четырехугольнике
и
(рис. 22). Проведем диагональ
Рассмотрим
и
(как внутренние накрест лежащие при параллельных прямых
и
и секущей
— общая сторона,
(по условию). Следовательно,
(по двум сторонам и углу между ними). Тогда
(как соответственные). Но это накрест лежащие углы при пересечении прямых
и
секущей
Поэтому
(по признаку параллельности прямых). Следовательно, в четырехугольнике
противолежащие стороны попарно параллельны. Поэтому
-параллелограмм.
2) Пусть в четырехугольнике и
(рис. 22). Проведем диагональ
Тогда
(по трем сторонам). Поэтому
и следовательно,
(по признаку параллельности прямых). Аналогично доказываем, что
Следовательно,
— параллелограмм.
3) Пусть в четырехугольнике диагонали
и
пересекаются в точке
и
(рис. 23).
(как вертикальные). Поэтому
(по двум сторонам и углу между ними). Отсюда
Аналогично доказываем, что
Принимая во внимание п. 2) этой теоремы, приходим к выводу, что
— параллелограмм.
4) Пусть в параллелограмме (рис. 16). Так как
то
т. е.
откуда
Но
и
— внутренние накрест лежащие углы для прямых
и
и секущей
Поэтому
по признаку параллельности прямых). Аналогично доказываем, что Следовательно,
— параллелограмм.
Пример:
В четырехугольнике Докажите, что
— параллелограмм.
Доказательство:
Пусть — данный четырехугольник (рис. 22). Рассмотрим
и
— их общая сторона,
(по условию). Тогда,
(по двум сторонам и углу между ними). Следовательно,
Но тогда в четырехугольнике
противолежащие стороны попарно равны, поэтому он является параллелограммом.
О некоторых видах четырехугольников (квадраты, прямоугольники, равнобокие и прямоугольные трапеции) знали еще древнеегипетские и вавилонские математики.
Термин «параллелограмм» греческого происхождения, считают, что он был введен Евклидом (около 300 г. до н. э.). Также известно, что еще раньше о параллелограмме и некоторых его свойствах уже знали ученики школы Пифагора («пифагорейцы»).
В «Началах» Евклида доказана следующая теорема: в параллелограмме противолежащие стороны равны и противолежащие углы равны, а диагональ делит его пополам, но не упоминается о том, что точка пересечения диагоналей параллелограмма делит каждую из них пополам.
Евклид также не упоминает ни о прямоугольнике, ни о ромбе.
Полная теория параллелограммов была разработана лишь в конце Средневековья, а в учебниках она появилась в XVII в. Все теоремы и свойства параллелограмма в этих учебниках основывались на аксиоме параллельности Евклида.
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
- На ватсапе пропали имена контактов что делать андроиде
- Маде ин денмарк что за страна
Главная > Учебные материалы > Математика: Планиметрия. Страница 2 | ||||
| ||||
Рис.2 Теорема. Признаки параллельности прямых. 3.Свойство углов при пересечении параллельных прямыхТеорема. Если две параллельные прямые пересечены третьей прямой, то внутренние накрест лежащие углы равны и сумма внутренних односторонних углов равна 180 градусов. Доказательство. Пусть a и b параллельные прямые. Прямая с пересекает их в точках А и В. (Рис. 3) Проведем через точку А прямую а 1 так, чтобы внутренние накрест лежащие углы, образованные между прямыми а 1 и b и секущей с, были равны. Тогда по признаку параллельности прямых они параллельны. А так как согласно аксиоме о единственной параллельной прямой, проходящей через точку не лежащей на данной прямой, такая прямая может быть только одна, то прямые а и а 1 совпадают. А следовательно внутренние накрест лежащие углы, образованные между прямыми а,b и секущей с, равны. | Рис.3 Теорема. Свойство углов при пересечении параллельных прямых. 4.Сумма углов треугольникаТеорема. Сумма углов треугольника равна 180 градусов. Доказательство. Пусть АВС данный треугольник. Проведем через вершину В прямую BD, параллельную стороне АС (Рис. 4). Тогда углы α и α’, γ и γ’ равны как внутренние накрест лежащие. А так как прямая BD представляет собой развернутый угол с вершиной угла в точке В, который равен 180°, т.е. α’ + β + γ’ = 180°, то сумма углов треугольника равна также 180°. Таким образом, мы пришли к выводу, что сумма углов треугольника, т.е. α + β + γ = 180°. | Рис.4 Теорема. Сумма углов треугольника. 5.Единственность перпендикуляра к прямойТеорема. Из любой точки, не лежащей на данной прямой, можно опустить только один перпендикуляр на данную прямую. Доказательство. Пусть дана прямая а и не лежащая на ней точка А. Отметим на прямой а произвольную точку, например D. И проведем через нее перпендикуляр.(Рис. 5) | Рис.5 Теорема. Единственность перпендикуляра к прямой. 6. Высота, биссектриса и медиана треугольникаВысотой треугольника, проведенной из данной вершины, называется перпендикуляр, опущенный из данной вершины на противолежащую сторону. Биссектрисой треугольника, проведенной из данной вершины, называется отрезок, соединяющий эту вершину угла и противолежащую сторону, и делящий данный угол пополам. Медианой треугольника, проведенной из данной вершины, называется отрезок, соединяющий эту вершину и противолежащую сторону, и делящий ее пополам. (Рис.6) Рис.6 Высота, биссектриса и медиана треугольника. 7. Свойство медианы равнобедренного треугольникаТеорема. В равнобедренном треугольнике медиана, проведенная из вершины угла к основанию, является биссектрисой и высотой. Доказательство: Рассмотрим треугольники ABD и BDC. Они равны по третьему признаку равенства треугольников. АВ = ВС по условию, AD = DC, так как BD медиана, а сторона BD у них общая. Следовательно, углы при вершине D равны, а так как они являются смежными, то ∠ADB = ∠CDB = 90°. Из равенства треугольников ABD и BDC следует равенство углов при вершине В, т.е. ∠AВD = ∠CВD = α. Отсюда можно сделать вывод, что медиана BD является биссектрисой и высотой. Рис.7 Свойство медианы равнобедренного треугольника. | |