Как доказать что одно число делится на другое
Признаки делимости чисел
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).
Что такое «признак делимости»
Признак делимости числа — это такая особенность числа, которая еще до выполнения деления позволяет определить, кратно ли число делителю.
Истинный путь джедая, чтобы зря не пыхтеть над числами, которые в конечном итоге не делятся.
Однозначные, двузначные и трехзначные числа
Однозначное число — это такое число, в составе которого один знак (одна цифра). Девять однозначных натуральных чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9.
Двузначные числа — такие, в составе которых два знака (две цифры). Цифры могут повторяться или быть различными.
Трехзначные числа — числа, в составе которых три знака (три цифры).
Чётные и нечётные числа
Число называют четным тогда, когда оно делится на два без остатка. А нечетные числа — те, что на два без остатка не делятся. Все просто!
Признаки делимости чисел
Признак делимости на 2. Сразу можно сказать, что число делится на 2, если последняя цифра четная.
Признак делимости на 3. Сумма цифр числа должна делиться на 3.
Признаки делимости на 4. Число делится на 4, если две последние цифры — 0 или если они образуют цифру, которая делится на 4.
Признаки делимости на 5. Число делится на 5, если заканчивается на 0 или 5.
Признак делимости на 6. На 6 делятся те числа, которые могут одновременно делится на 2 и на 3.
Признаки делимости на 8. Число делится на 8, если три последних цифры — 0 или если они образуют число, которое делится на 8.
Признак делимости на 9. Число делится на 9, если сумма цифр делится на 9.
Признаки делимости на 10, 100. Числа, которые заканчиваются на 0, 00, 000 делятся на 10, 100, 1000 и так далее.
Как доказать что одно число делится на другое
Предмет изучения этой статьи – целые числа.
Такие арифметические операции, как сложение, вычитание и умножение целых чисел в результате дают так же целое число. Особое внимание следует обратить на деление двух целых чисел, т.к. результатом такого деления может быть и не целое число.
Определение: Натуральными называются целые неотрицательные числа такие, как 0,1,2…
Замечание: В пределах этой статьи под «числом» следует понимать «целое число».
Определение: Число a делится на число b (или, что то же самое, число b делит число a), если существует такое число c, что верно равенство
.
Запись факта делимости числа a на число b :
.
Этот знак, три точки, обозначает лишь то, что число делится на другое число, и совсем не проводит какое либо действие с этими числами, как например, знак +, который производит сложение двух чисел и выдает результат этого действия.
Всегда, когда при прочтении текста встречается запись , следует читать «число а делится на число b«.
Важное замечание: В формулировке некоторых теорем, утверждений и т.п. часто встречается фраза «…тогда и только тогда, когда…».
Например: «Свойство a выполняется тогда и только тогда, когда выполняется свойство b.»
Эту длинную разу можно разбить на две:
1) «Свойство a выполняется тогда, когда выполняется свойство b.»
2) «Свойство a выполняется только тогда, когда выполняется свойство b.»
Первое обозначает, что если есть b, то из него следует a, а второе обозначает обратное, что если есть a, то есть и b. При доказательстве теорем и утверждений для этих случаев используется терминология «туда» и «обратно». Фраза «необходимо и достаточно» имеет абсолютно аналогичное значение.
Встречается обозначение: , т.е. туда: и обратно: .
Замечание: При доказательстве теорем на делимость требуется посимвольное представление многозначного числа. Например, число 543. У него количество единиц – 3 шт., количество десятков – 4 шт., и 5 сотен, т.е. 5,4 и 3 – это цифры, то есть символы, и из них уже составляется число 543.
Теперь перейдем к переменным. Пусть . Как же записать число 543? Если записать , то возникает проблемка – в математике зачастую не пишется знак умножения, и в этом случае получится, что , а совсем не 543.
В случае, если требуется именно символьная запись, над числом ставят черту: . Она и говорит, что эти буквы надо воспринимать именно как символы.
Пример: Число можно представить несколькими способами:
1) Если , то
.
2) Если , то
.
3) Если , то
.
Простейшие свойства делимости:
1) (рефлексивность делимости).
2) Если и , то (транзитивность).
3) Если и , то либо , либо (антисимметричность).
4) Если и , то
.
5) Для того, чтобы необходимо и достаточно, чтобы .
6) Если , то
.
Но, если не вдаваться в тонкости, то для доказательств признаков делимости будут использоваться две теоремы:
Теорема 1:
Пусть — натуральные числа. Если и , то .
(Если каждое из слагаемых делится на какое-либо число, то и все сумма делится на это число.)
Доказательство:
Если и , то, по определению делимости, существуют такие числа и , что верны равенства:
.
Складываем равенства (левую часть первого равенства складываем с левой частью второго, а правую – с правой):
.
Получили, что существует такое число , что верно равенство
.
Это и означает по определению делимости, что (сумма делится на с ).
Теорема доказана.
Теорема 2:
Пусть — натуральные числа. Если , то и .
(Если в произведении хотя бы один сомножитель делится на какое-либо число, то и все произведение делится на это число.)
Доказательство:
Пусть дано произведение и , т.е. a можно представить как , где p — натуральное число.
Исходное произведение получается в виде:
.
Это, по определению делимости, и обозначает делимость произведения . на c.
Признаки делимости чисел
В данной публикации мы рассмотрим признаки делимости на числа от 2 до 11, сопроводив их примерами для лучшего понимания.
Признак делимости – это алгоритм, используя который можно сравнительно быстро определить, является ли рассматриваемое число кратным заранее заданному (т.е. делится ли на него без остатка).
Признак делимости на 2
Число делится на 2 тогда и только тогда, когда его последняя цифра является четной, т.е. также делится на два.
Примеры:
Признак делимости на 3
Число делится на 3 тогда и только тогда, когда сумма всех его цифр, также, делится на три.
Примеры:
Признак делимости на 4
Двузначное число
Число делится на 4 тогда и только тогда, когда сумма удвоенной цифры в разряде его десятков и цифры в разряде единиц, также, делится на четыре.
Число разрядов больше 2
Число кратно 4, когда две его последние цифры образуют число, делящееся на четыре.
Примечание:
Число делится на 4 без остатка, если:
Признак делимости на 5
Число делится на 5 тогда и только тогда, когда его последняя цифра – это 0 или 5.
Примеры:
Признак делимости на 6
Число делится на 6 тогда и только тогда, когда он одновременно кратно и двум, и трем (см. признаки выше).
Примеры:
Признак делимости на 7
Число делится на 7 тогда и только тогда, когда сумма утроенного числа его десятков и цифры в разряде единиц, также, делится на семь.
Признак делимости на 8
Трехзначное число
Число делится на 8 тогда и только тогда, когда сумма цифры в разряде единиц, удвоенной цифры в разряде десятков и учетверенной в разряде сотен делится на восемь.
Число разрядов больше 3
Число делится на 8, когда три последние цифры образуют число, делящееся на 8.
Признак делимости на 9
Число делится на 9 тогда и только тогда, когда сумма всех его цифр, также, делится на девять.
Примеры:
Признак делимости на 10
Число делится на 10 тогда и только тогда, когда оно оканчивается на ноль.
Примеры:
Признак делимости на 11
Число делится на 11 тогда и только тогда, когда модуль разности сумм четных и нечетных разрядов равен нулю или делится на одиннадцать.
Примеры:
Делимость чисел. Признаки делимости. Основная теорема арифметики
В этой статье – необходимая теория для решения задачи 18 Профильного ЕГЭ по математике. Но это не все. Знания о числах и их свойствах, признаки делимости и формула деления с остатком могут пригодиться вам при решении многих задач ЕГЭ.
Повторим еще раз, какие бывают числа.
Например, при делении 9 на 4 мы получаем частное 2 и остаток 1, то есть 9 = 4∙2 + 1.
Простые числа – те, что делятся только на себя и на единицу. Единица не является ни простым, ни составным числом. Простые числа: 2, 3, 5, 7, 11, 13, 17, 19…
Числа называются взаимно простыми, если они не имеют общих делителей, кроме 1.
Любое натуральное число можно разложить на простые множители.
Например, 72 = 2∙2∙2∙3∙3, а 98 = 2∙7∙7.
Основная теорема арифметики: Любое натуральное число можно представить в виде произведения простых делителей, взятых в натуральных степенях, причем это разложение единственно.
Наименьшее общее кратное двух чисел (НОК) — это наименьшее число, которое делится на оба данных числа.
Наибольший общий делитель двух чисел (НОД) — это наибольшее число, на которое делятся два данных числа.
последняя цифра числа четная;
сумма цифр числа делится на 3;
число заканчивается на 0 или на 5;
сумма цифр числа делится на 9;
последняя цифра числа равна 0;
суммы цифр на четных и нечетных позициях числа равны или их разность кратна 11.
Делимость чисел. Признак делимости
Определение 1. Пусть число a 1 ) есть произведение двух чисел b и q так, что a=bq. Тогда a называется кратным b.
1 ) В данной статье под словом число будем понимать целое число.
Можно сказать также a делится на b, или b есть делитель a, или b делит a, или b входит множителем в a.
Из определения 1 вытекают следующие утверждения:
Действительно. Так как
где m и n какие то числа, то
Следовательно a делится на c.
Если в ряду чисел, каждое делится на следующее за ним, то каждое число есть кратное всех последующих чисел.
Действительно. Так как
Признаки делимости
Выведем общую формулу для определения признака делимости чисел на некоторое натуральное число m, которое называется признаком делимости Паскаля.
Найдем остатки деления на m следующей последовательностью. Пусть остаток от деления 10 на m будет r1, 10·r1 на m будет r2, и т.д. Тогда можно записать:
(1) |
Так как при делении любого числа на m остатки могут быть 0,1. m-1, то через m шагов остатки от деления на m будут повторяться (следовательно пересчитать их не нужно).
Любое натуральное число A в десятичной системе счисления можно представить в виде
(2) |
Докажем, что остаток деления числа A на m равна остатку деления числа
(3) |
Как известно, если два числа при делении на какое то число m дают одинаковый остаток, то из разность делится на m без остатка.
Рассмотрим разность A−A’
(4) |
Покажем, что 10 i −ri делиться на m при всех i=1,2. m−1.
10−ri=mk1 делится на m (т.к. mk1 кратно m),
(5) |
(6) |
(7) |
Исходя из выражения (3), можно получить признаки делимости для конкретных чисел.
Признаки делимости чисел 2, 3, 4, 5, 6, 7, 8, 9, 10
Признак делимости на 2.
Следуя процедуре (1) для m=2, получим:
10=2·5+0, 10·0=2·5+0, и т.д. |
Все остатки от деления на 2 равняются нулю. Тогда, из уравнения (3) имеем
Следовательно число делится на 2 тогда и только тогда, когда его последняя цифра делиться на 2 (т.е. когда число является четным).
Признак делимости на 3.
Следуя процедуре (1) для m=3, получим:
Все остатки от деления на 3 равняются 1. Тогда, из уравнения (3) имеем
Следовательно число делится на 3 тогда и только тогда, когда сумма всех его цифр делится на 3.
Признак делимости на 4.
Следуя процедуре (1) для m=4, получим:
Все остатки от деления на 4 кроме первого равняются 0. Тогда, из уравнения (3) имеем
Следовательно число делится на 4 тогда и только тогда, когда удвоенное число десятков сложенное с числом единиц делится на 4. Число делится на 4, если последние две цифры составляют число, делящееся на 4.
Признак делимости на 5.
Следуя процедуре (1) для m=5, получим:
Все остатки равны нулю. Тогда, из уравнения (3) имеем
Следовательно число делится на 5 тогда и только тогда, когда последняя цифра этого числа делится на 5, т.е. число оканчивается на 0 или 5.
Признак делимости на 6.
Следуя процедуре (1) для m=6, получим:
Все остатки равны 4. Тогда, из уравнения (3) имеем
Следовательно число делится на 6 тогда и только тогда, когда учетверённое число десятков, сложенное с числом единиц, делится на 6. То есть из числа отбрасываем правую цифру, далее суммируем полученное число с 4 и добавляем отброшенное число. Если данное число делится на 6, то исходное число делится на 6.
Пример. 2742 делится на 6, т.к. 274*4+2=1098, 1098=109*4+8=444, 444=44*4+4=180 делится на 6.
Более простой признак делимости. Число делится на 6, если оно делится на 2 и на 3 (т.е. если оно четное число и если сумма цифр делится на 3). Число 2742 делится на 6, т.к. число четное и 2+7+4+2=15 делится на 3.
Признак делимости на 7.
Следуя процедуре (1) для m=7, получим:
Все остатки разные и повторяются через 7 шагов. Тогда, из уравнения (3) имеем
(8) |
Следовательно число делится на 7 тогда и только тогда, когда (8) делится на 7.
Пример. 3801 делится на 7, т.к. 1+0*3+8*2+3*6=1+16+18=35 делится на 7.
Другой признак делимости. Для определения, делится ли число на 7, из числа отбрасываем последнюю с права цифру, далее умножаем полученное число на 3 и добавляем и добавляет отброшенное число. Если данное число делится на 7, то исходное число делится на 6. 380*3+1=1141, 114*3+1=343, 34*3+3=105, 10*3+5=35 делится на 7, следовательно 3801 делится на 7.
Признак делимости на 8.
Следуя процедуре (1) для m=8, получим:
Все остатки все остатки нулевые, кроме первых двух. Тогда, из уравнения (3) имеем
(9) |
Следовательно число делится на 8 тогда и только тогда, когда (9) делится на 8.
Пример. 4328 делится на 8, т.к. 8+2*2+4*3=24 делится на 8.
Признак делимости на 9.
Следуя процедуре (1) для m=9, получим:
Все остатки от деления на 9 равняются 1. Тогда, из уравнения (3) имеем
Следовательно число делится на 9 тогда и только тогда, когда сумма всех его цифр делится на 9.
Признак делимости на 10.
Следуя процедуре (1) для m=10, получим:
Все остатки от деления на 10 равняются 0. Тогда, из уравнения (3) имеем
Следовательно число делится на 10 тогда и только тогда, когда последняя цифра делится на 10 (то есть последняя цифра нулевая).