Как доказать что угол прямой геометрия 8 класс
Прямоугольник
Частным видом параллелограмма является прямоугольник.
Прямоугольником называют параллелограмм, у которого все углы прямые |
Особое свойство прямоугольника
Доказательство
Доказать: AC = DB
Доказательство:
Теорема
Доказательство
Доказательство:
Рассмотрим ABD иACB:
Теорема
Доказательство
Доказательство:
Противолежащие углы параллелограмма равны, A = C = 90 0 и В = D = 90 0
Две теоремы, доказанные выше, называют признаками прямоугольника.
Поделись с друзьями в социальных сетях:
Открытый урок по геометрии в 8 классе «Учитесь доказывать теоремы»
Онлайн-конференция
«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»
Свидетельство и скидка на обучение каждому участнику
Открытый урок по геометрии в 8 классе коррекционной школы для учащихся
с ограниченными возможностями здоровья
Тема урока: « Учитесь доказывать теоремы»
образовательная : Познакомить учащихся с методами доказательств теорем
коррекционная: Уметь делать словесные, логические обобщения, выделять из общего частное, развивать образную память
воспитательная: Воспитывать трудолюбие, настойчивость в достижении цели
Задачи: Научить некоторым методам доказательства теорем
Метод обучения: словестный, иллюстрация
Форма контроля: устный опрос
Я приветствую вас на уроке геометрии. Желаю вам за ограниченное время нашего урока с помощью вашего ума достичь желаемого. То есть решить все задачи стоящие перед нами на уроке по теме «Учитесь доказывать теоремы».
2. Актуализация знаний.
Учитель. Ребята, как вы думаете, что важнее в геометрии: теория или практика?
Учитель. У древнегреческого учёного Фалеса спросили: что есть больше всего на свете?
— Что приятнее всего?
3.Новый материал в форме беседы
Усвоить содержание теорем (правил, формул, тождеств пр.) нетрудно. Значительно труднее научиться доказывать теоремы. При этом речь идет не о запоминании доказательства той или другой теоремы. Специально запоминать не нужно, нужно научиться самому доказывать теоремы.
Что значит доказать теорему? Доказательство в широком смысле –это логическое рассуждение, в процессе которого истинность какой-либо мысли обосновывается с помощью других положений. Поэтому, когда вы убеждаете своего товарища в чем-либо или отстаиваете в споре с ним свое мнение, то вы по существе проводите доказательство( умело или неумело – это другой вопрос). В жизни каждодневно приходится доказывать те или иные мысли, приходиться убеждать в чем-то.
Доказательство математических теорем есть частный случай доказательства вообще. Оно отличается от доказательств в житейских условиях, что совершается по возможности чисто дедуктивным способом, т.е. выведением новой доказываемой мысли из ранее доказанных или принятых без доказательства мыслей (аксиом) по правилам логики без каких-либо ссылок на примеры или опыт. В других науках, в житейских обстоятельствах часто прибегаем к опыту и примерам. Мы говорим: «Смотри» и это может служить доказательством. В математике такой способ доказательства недопустим. Математическое доказательство должно представлять цепочку логических следствий из исходных аксиом., определений, условий теорем.
Таким образом, при доказательстве теоремы мы сводим ее к ранее доказанным теоремам, а те в свою очередь к другим ит.д. Очевидно, этот процесс должен быть конечным. Аксиомы служат в качестве оснований для доказательства всех теорем математики.
Всякий шаг доказательства состоит из трех частей:1. Предложение (аксиома, теорема, определение), на основе которого производится шаг доказательства, этот шаг доказательства называется посылкой или аргументом 2. Логическое рассуждение, в процессе которого посылка применяется к условиям теоремы или ранее полученным следствиям 3. Логическое следствие применения посылки к условиям или ранее полученным следствиям. В последнем шаге доказательства теоремы в качестве следствия получаем утверждение, которое необходимо было доказать.
Покажем процесс доказательства на примере теоремы: »Диагонали прямоугольника равны» В этой теореме нам дан произвольный прямоугольник. Для того, чтобы было легче рассуждать в процессе доказательства, поступают следующим образом. Начертим прямоугольник ABCD
Все доказательства этой теоремы можно изобразить в виде схемы. Схему перенести в тетради.
Осваиваем простые приемы решения геометрических задач
Идея I
Если в четырехугольнике суммы противоположных углов равны 180°, то вокруг этого четырехугольника можно описать окружность.
Задача. Дан прямоугольный треугольник ABC. На катете АС выбрана произвольная точка М. Из точки М опущен перпендикуляр MN на гипотенузу. Докажите, что углы MCN и MBN равны.
Решение. Угол MNB — прямой. По условию, треугольник ABC прямоугольный, значит, есть еще один прямой угол. Обратим внимание на четырехугольник MNBC: в нем есть два противолежащих прямых угла, их сумма равна 180°. Следовательно, вокруг четырехугольника MNBC можно описать окружность. Углы, равенство которых нужно доказать, опираются на одну дугу MN и являются вписанными. Два вписанных угла опираются на одну и ту же дугу, значит, они равны.
Идея II
Если известен угол треугольника, можно найти угол между биссектрисами, обращенными в сторону этого угла.
Задача. Дан треугольник ABC. Проведены биссектрисы углов A и С, они пересекаются в точке O. Найдите угол AOC (т.е. есть угол между биссектрисами).
Решение. Известно, что ∠ABC = ∠В. Эту задачу легко решить с помощью теоремы суммы углов треугольников. ∠A + ∠C = 180° – ∠B. Суммы половинок углов А и С равны 90° – ½ ∠B. Тогда ∠AOC = 90° + ½ ∠B.
Совмещение идей I и II
Некоторые задачи находятся как бы на пересечении нескольких идей решения.
Задача. Дан треугольник ABC. Известно, что угол В равен 60°. Проведены биссектрисы углов: АК и СМ, они пересекаются в точке О. Докажите, что отрезок ОМ равен отрезку ОК.
Решение. Найдем угол АОС по формуле 90° + ½ ∠B. ∠В = 120°. Обращаем внимание на четырехугольник МВКО. В нем сумма противоположных углов равна 180°, значит, вокруг него можно описать окружность. О — точка пересечения биссектрис треугольника АВС. Следовательно, луч ВО делит угол АВС пополам. ∠МВО = ∠ОВК. Данные углы являются вписанными, значит, равны и дуги, на которые они опираются. Дуга МО равна дуге ОК. Известно, что равные дуги стягивают равные хорды. Хорда ОМ равна хорде ОК.
Идея III
Если из двух точек, лежащих в одной полуплоскости, отрезок между двумя другими точками виден под одним и тем же углом, то эти 4 точки лежат на одной окружности.
Задача. Дан остроугольный треугольник АВС. Проведены две высоты: АК и СN. Докажите, что серединный перпендикуляр отрезка NK пересекает отрезок АС в середине (точка О является серединой отрезка АС).
Решение. ∠ANC = ∠AKC. Мы можем нарисовать окружность вокруг четырехугольника ANKC. Отрезок NK является в этой окружности хордой, а АС — диаметром, поскольку он виден из точек N и K под прямым углом. Серединный перпендикуляр проведен к хорде, он содержит диаметр окружности. Два диаметра пересекаются в центре окружности. О — это центр окружности. АО и ОС — это диаметры. Следовательно, АО = ОС.
Идея IV
Если в треугольнике продлить медиану и построить параллелограмм, можно извлечь много дополнительных данных для решения задачи.
Задача. Дан треугольник АВС и его медиана ВМ. Известно, что ВМ в два раза меньше стороны АВ. Докажите, что угол МВС равен сумме ∠А + ∠С.
Решение. Воспользуемся построением параллелограмма. Проведем МК. BM = ½ ВК. Следовательно, АВ = ВК. В этом случае треугольник АВК является равнобедренным. В равнобедренном треугольнике углы при основании равны, значит, ∠ВАК = ∠ВКА. ∠КАМ = ∠С. ∠АКВ = ∠СВК. Из этого мы получаем необходимое равенство.
Совмещение идей III и IV
Задача. Дан треугольник АВС, в котором проведена медиана ВМ. На медиане ВМ выбрана точка К так, что ∠ВАС = ∠АКМ. Докажите, что ∠ АСВ = ∠МКС.
Решение. Продлим медиану на ее длину и получим точку N. BM = MN. ABCN — параллелограмм. ∠BAC = ∠ACN. Из точек К и С, лежащих по одну сторону от прямой, видим отрезок AN под одним и тем же углом. Вокруг четырехугольника AKCN описываем окружность. Поскольку ABCN — параллелограмм, ∠NAC = ∠BCA. Но углы NAC и NKC являются вписанными, опирающимися на одну дугу. Следовательно, ∠NAC = ∠NKC. Так мы доказали, что ∠МКС = ∠МСВ.
Идея V
Если в прямоугольном треугольнике АВС проведена медиана из вершины прямого угла, то медиана СМ будет равняться половине гипотенузы АВ. То есть СМ = АМ = МВ.
Задача. Дан треугольник АВС. На внешние стороны построены два прямоугольных треугольника: ADB и BEC. Докажите что отрезок DE, соединяющий вершины прямых улов, не больше полпериметра треугольника АВС.
Решение. Проведем медианы через точки M и N (середины сторон АВ и ВС). Соединим точки, образовав четырехугольник DENM. Звено ломаной DE не превосходит сумму длин отрезков DM + MN + NE. DE ≤ DM + MN + NE = ½ АВ + ½ АС + ½ ВС. Следовательно, DE ≤ ½ Равс
Факт, обратный данному. Если в треугольнике АВС медиана СМ равна половине стороны АВ, значит, АСВ = 90°. Т.е. если в треугольнике медиана равна половине стороны, к которой она проведена, то этот треугольник является прямоугольным. Рассмотрим эту идею, продемонстрировав также, как только с помощью линейки можно решить задачу на построение перпендикуляра к данной прямой.
Возьмем линейку с ценой деления 1 см. Отложим отрезки: точки А, М и В, так, что АМ = МВ = 1 см. Развернув линейку, поставим точку F (MF = 1 см) и точку К (МК = 1 см). С помощью линейки соединим A и F, B и K и продлим прямые до пересечения в точке С. На рисунке виден треугольник АFВ. FM в нем медиана, равняющаяся половинке стороны. Следовательно, угол F — прямой. Таким же свойством обладает треугольник АКВ. В треугольнике АСВ отрезки АК и ВF являются высотами. Значит, точка H в пересечении высот является центром треугольника. Если соединить СН и продлить в СЕ, это тоже будет высота треугольника АВС. Следовательно, СЕ перпендикулярно АВ. Так, только с помощью линейки мы провели прямую, перпендикулярную данной.
В учебниках авторства Мерзляка А.Г., Полонского В.Б. и Якира М.С. образцовые задачи, демонстрирующие ту или иную идею решения, выделены и обозначены изображением ключа.
Признаки параллельности двух прямых
Прямая с называется секущей по отношению к прямым а и b, если она пересекает их в двух точках (рис. 100). При пересечении прямых а и b секущей с образуется восемь углов, которые на рисунке 100 обозначены цифрами. Некоторые пары этих углов имеют специальные названия:
накрест лежащие углы: 3 и 5, 4 и 6;
односторонние углы: 4 и 5, 3 и 6;
соответственные углы: 1 и 5, 4 и 8, 2 и 6, 3 и 7.
Рассмотрим три признака параллельности двух прямых, связанные с этими парами углов.
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны. |
Пусть при пересечении прямых а и b секущей АВ накрест лежащие углы равны: ∠1 = ∠2 (рис. 101, а).
Докажем, что а || b. Если углы 1 и 2 прямые (рис. 101, б), то прямые а и b перпендикулярны к прямой АВ и, следовательно, параллельны.
Рассмотрим случай, когда углы 1 и 2 не прямые.
Из середины О отрезка АВ проведём перпендикуляр ОН к прямой а (рис. 101, в). На прямой b от точки В отложим отрезок ВН1, равный отрезку АН, как показано на рисунке 101, в, и проведём отрезок ОН1. Треугольники ОНА и ОН1В равны по двум сторонам и углу между ними (АО = ВО, АН = ВН1, ∠1 = ∠2), поэтому ∠3 = ∠4 и ∠5 = ∠6. Из равенства ∠3 = ∠4 следует, что точка Н1 лежит на продолжении луча ОН, т. е. точки Н, О и Н1 лежат на одной прямой, а из равенства ∠5 = ∠6 следует, что угол 6 — прямой (так как угол 5 — прямой). Итак, прямые а и b перпендикулярны к прямой HH1 поэтому они параллельны. Теорема доказана.
Теорема о вписанном угле
На рисунке 1 угол ВАС вписанный, дуга ВLС расположена внутри этого угла. В таком случае говорят, что вписанный угол АВС опирается на дугу ВLC.
Теорема
Вписанный угол измеряется половиной дуги, на которую он опирается. |
Доказательство
Доказать: АВС = АС.
Доказательство:
Луч ВО совпадает с одной из сторон угла АВС.
Пусть ВО совпадает с ВС (Рис. 2).
В данном случае дуга АС меньше полуокружности, следовательно, АОС =АС (т.к. АОС — центральный угол, причем он меньше полуокружности, поэтому градусная мера центрального угла равна градусной мере дуги, на которую он опирается).
Луч ВО делит угол АВС на два угла.
В данном случае луч ВО пересекает дугу АС в некоторой точке D (Рис. 3).
Точка D разделят дугу АС на две дуги: АD и DС, поэтому АС = АD + DС.
Луч ВD разделяет угол АВС на два угла, поэтому АВС = АВD + DВС.
По доказанному в 1 случае АВD = АD и DВС = DС. Складывая эти равенства, получаем: АВD + DВС = АD + DС или АВD + DВС = (АD + DС). Следовательно, АВС = АС.
Луч ВО не делит угол АВС на два угла и не совпадает со стороной этого угла.
В данном случае луч ВС пересекает дугу АD в точке С (Рис. 4).
Луч ВС разделяет угол АВD на два угла, поэтому АВD = АВC + CВD, откуда АВC = АВD — CВD.
Теорема доказана.
Следствия из теоремы о вписанном угле
1. Вписанные углы, опирающиеся на одну и ту же дугу, равны (Рис. 5). |
Теорема
Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды. |
Доказательство
Доказать: АЕВЕ = СЕDЕ.
Доказательство:
В АDЕ и СВЕ: 1 = 2, т.к. они вписанные и опираются на одну и ту же дугу ВD (смотри следствие 1 из теоремы о вписанном угле), 3 = 4 как вертикальные углы, следовательно, треугольники АDЕ и СВЕ подобны (по 1 признаку подобия треугольников). В подобных треугольниках сходственные стороны пропорциональны, поэтому , откуда АЕВЕ = СЕDЕ. Теорема доказана.
Теорема
Угол между касательной и хордой, проведенной в точку касания, равен половине дуги, стягиваемой этой хордой. |
Доказательство
Доказать: ВАС = АВ.
Доказательство:
Поделись с друзьями в социальных сетях: