Как найти число зная чему равна часть этого числа

Нахождение числа по его дроби

Если известно сколько составляет часть от целого, то по известной части можно «восстановить» целое.

Для этого пользуемся правилом нахождения целого (числа) по его дроби (части).

Чтобы найти число по его части, выраженной дробью, нужно данное число разделить на дробь.

Пример. Рассмотрим задачу.

Поезд прошёл 240 км, что составило

15
23

всего пути. Какой путь должен пройти поезд?

Решение. 240 км — часть всего пути. Эти же километры выражены дробью 15/23 от всего пути. Знаменатель дроби говорит о том, что весь путь разделён на 23 части, и 15 таких частей составляют 240 км (числитель дроби равен 15 ).
Значит, можно найти, сколько составляет

1
23

часть пути.

Значит, чтобы найти весь путь ( 23 части, каждая из которых по 16 км) нужно:

Кратко запись решения такой задачи можно сделать следующим образом.

Как найти число зная чему равна часть этого числа. Смотреть фото Как найти число зная чему равна часть этого числа. Смотреть картинку Как найти число зная чему равна часть этого числа. Картинка про Как найти число зная чему равна часть этого числа. Фото Как найти число зная чему равна часть этого числа

Ответ: поезд должен пройти 368 км.

Сложные задачи на нахождение числа по его части

Часто задачи данного типа сложнее, чем рассмотренная задача выше, и более сложные задачи приходиться решать в несколько действий.

Решение. Как обычно подчеркнём в условии задачи все важные данные.

Как видно из условия, четыре невыученных слова — это часть от всех слов, которую можно найти в виде разности дробей.

Как найти число зная чему равна часть этого числа. Смотреть фото Как найти число зная чему равна часть этого числа. Смотреть картинку Как найти число зная чему равна часть этого числа. Картинка про Как найти число зная чему равна часть этого числа. Фото Как найти число зная чему равна часть этого числа

Такую часть всех слов составляют 4 слова.

Ответ: всего 48 слов надо было выучить к диктанту.

Источник

Как решать задачи с процентами

Как найти число зная чему равна часть этого числа. Смотреть фото Как найти число зная чему равна часть этого числа. Смотреть картинку Как найти число зная чему равна часть этого числа. Картинка про Как найти число зная чему равна часть этого числа. Фото Как найти число зная чему равна часть этого числа

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Основные определения

Когда мы сравниваем разные части целого, мы используем такие понятия, как половина (1/2), треть (1/3), четверть (1/4). Это удобно: отрезать половину пирога, пройти треть пути, закончить первую четверть в школе.

Чтобы сравнивать сотые доли, придумали процент (1/100): с латинского языка — «за сто».

Процент — это одна сотая часть от любого числа. Обозначается вот так: %.

Как найти число зная чему равна часть этого числа. Смотреть фото Как найти число зная чему равна часть этого числа. Смотреть картинку Как найти число зная чему равна часть этого числа. Картинка про Как найти число зная чему равна часть этого числа. Фото Как найти число зная чему равна часть этого числа

Чтобы узнать, как перевести проценты в дробь, нужно убрать знак % и разделить число на 100, как в примере выше.

А если нужно перевести десятичную дробь в проценты — умножаем дробь на 100 и добавляем знак %. Например:

А вот, как перевести проценты в десятичную дробь — обратным действием:

Выразить дробь в процентах просто. Для перевода сначала превратим её в десятичную дробь, а потом используем предыдущее правило:

Как найти число зная чему равна часть этого числа. Смотреть фото Как найти число зная чему равна часть этого числа. Смотреть картинку Как найти число зная чему равна часть этого числа. Картинка про Как найти число зная чему равна часть этого числа. Фото Как найти число зная чему равна часть этого числа

Типы задач на проценты

В 5, 6, 7, 8, 9 классах в задачках по математике на проценты сравнивают части одного целого, определяют долю части от целого, ищут целое по части. Давайте рассмотрим все виды задач на проценты.

Тип 1. Нахождение процента от числа

Чтобы найти процент от числа, нужно число умножить на процент.

Задача. За месяц на заводе изготовили 500 стульев. 20% изготовленных стульев не прошли контроль качества. Сколько стульев не прошло контроль качества?

Как решаем: нужно найти 20% от общего количества изготовленных стульев (500).

Из общего количества изготовленных стульев контроль не прошли 100 штук.

Тип 2. Нахождение числа по его проценту

Чтобы найти число по его проценту, нужно его известную часть разделить на то, сколько процентов она составляет от числа.

Задачи по поиску процента по числу и числа по его проценту очень похожи. Чтобы не перепутать — внимательно читаем условия, иначе зайдем в тупик или решим неправильно. Если в задании есть слова «который», «что составляет» и «который составляет» — перед нами задача по нахождению числа по его проценту.

Задача. Школьник решил 38 задач из учебника. Что составляет 16% числа всех задач в книге. Сколько всего задач собрано в этом учебнике?

Как решаем: мы не знаем, сколько всего задач в учебнике. Но нам известно, что 38 задач составляют 16% от общего количества. Запишем 16% в виде дроби: 0,16. Далее известную нам часть целого разделим на ту долю, которую она составляет от всего целого.

38/0,16 = 38 * 100/16 = 237,5

Значит 237 задачи включили в этот сборник.

Тип 3. Нахождение процентного отношения двух чисел

Чтобы найти, сколько процентов одно число составляет от другого, нужно ту часть, о которой спрашивается, разделить на общее количество и умножить на 100%.

Задача. В классе учится 25 человек. 10 из них — девочки. Сколько процентов девочек в классе?

Как решаем: возьмем алгоритм из правила выше:

10/25 * 100% = 2/5 * 100% = 2 * 100/5 = 40%

В классе учится 10 девочек — это 40%.

Тип 4. Увеличение числа на процент

Чтобы увеличить число на некоторое количество процентов, нужно найти число, которое выражает нужное количество процентов от данного числа, и сложить его с данным числом.

Формула расчета процента от числа выглядит так:

где a — число, которое нужно найти,

b — первоначальное значение,

c — проценты.

Задача. В прошлом месяце стикер-пак стоил 110 рублей. А в этом месяце на 12% больше. Сколько стоит стикер-пак?

Как решаем: подставим в формулу данные из условий задачи.

110 * (1 + 12/100) = 110 * 1,12 = 123,2.

Стоимость стикер-пака в этом месяце — 123 рубля 20 копеек.

Тип 5. Уменьшение числа на процент

Чтобы уменьшить число на несколько процентов, нужно найти число, которое выражает нужное количество процентов данного числа, и вычесть его от данного числа.

Формула расчета выглядит так:

где a — число, которое нужно найти,

b — первоначальное значение,

c — проценты.

Задача. В прошлом году школу закончили 100 ребят. А в это году выпускников на 25 меньше. Сколько выпускников в этом году?

Как решаем: подставим в формулу данные из условий задачи.

75 выпускников закончат школу в этом году.

Тип 6. Задачи на простые проценты

Простые проценты — метод расчета процентов, при котором начисления происходят на первоначальную сумму вклада или долга.

Формула расчета выглядит так:

где a — исходная сумма,

S — сумма, которая наращивается,

x — процентная ставка,

y — количество периодов начисления процента.

Задача. Родители взяли в банке кредит 5000 рублей, чтобы купить тебе что-то классное. Кредит на год под 15% ежемесячно. Сколько денег они внесут через год?

Как решаем: подставим в формулу данные из условий задачи.

5000 * (1 + 12 * 15/100) = 14000

Родители через год внесут в банк 14000 рублей.

Тип 7. Задачи на сложные проценты

Сложные проценты — это метод расчета процентов, когда проценты прибыли прибавляют к сумме на остатке каждый месяц. В следующий раз проценты начисляют на эту новую сумму.

Формула расчета выглядит так:

где S — наращиваемая сумма,

a — исходная,

x — процентная ставка,

y — количество периодов начисления процента.

Задача. Папа взял в банке кредит 25000 рублей на 3 месяца под 15%. Нам нужно узнать, сколько денег придется заплатить банку по истечении срока кредита.

Как решаем: просто подставим в формулу данные из условий задачи:

25000 * (1 + 15/100)3 = 38021,875 — искомая сумма.

Курсы по математике для учеников с 1 по 11 классы. Вводный урок — бесплатно!

Способы нахождения процента

Универсальная формула для решения задач на проценты:

A * b = C,
где A — исходное число,
b — проценты, переведенные в десятичную дробь,
C — новое число.

Чтобы применить алгоритм, нужно прочитать задачу, отметить, какие два числа нам известны и найти третье.

Есть еще четыре способа поиска процентов. Рассмотрим каждый из них.

Деление числа на 100

При делении на 100 получается 1% от этого числа. Это правило можно использовать по-разному. Например, чтобы узнать процент от суммы, нужно умножить их на размер 1%. А чтобы перевести известное значение, следует разделить его на размер 1%. Этот метод отлично помогает в вопросе, как перевести целое число в проценты.

Представьте, что вы пришли в магазин за шоколадом. Обычно он стоит 250 рублей, но сегодня скидка 15%. Если у вас есть дисконтная карта магазина, шоколад обойдется вам в 225 рублей. Чем будет выгоднее воспользоваться: скидкой или картой?

Ответ: выгоднее воспользоваться скидкой 15%.

Составление пропорции

Пропорция — определенное соотношение частей между собой.

С помощью метода пропорции можно рассчитать любые %. Выглядит это так:

Читается: a относится к b так, как с относится к d. Также важно помнить, что произведение крайних членов равно произведению средних. Чтобы узнать неизвестное из этого равенства, нужно решить простейшее уравнение.

Рассмотрим пример. На сколько выгодно покупать спортивную футболку за 1390 рублей при условии, что в магазине в честь дня всех влюбленных действует скидка 14%?

Ответ: купить спортивную футболку выгоднее на 194,6 рубля.

Соотношения чисел

Есть случаи, при которых можно использовать простые дроби.

Задача для тренировки. В черную пятницу вы нашли отличный пиджак со скидкой 25%. В обычный день он стоит 8500 рублей, но сейчас с собой есть только 6400 рублей. Хватит ли средств для покупки?

Ответ: средств хватит, так как пиджак стоит 6375 рублей.

Задачи на проценты с решением

Как мы уже убедились, решать задачи на проценты совсем несложно. Для закрепления материала рассмотрим реальные примеры на проценты из учебников и несколько заданий для подготовки к ЕГЭ.

Задача 1. Организм взрослого человека на 70% состоит из воды. Какова масса воды в теле человека, который весит 76 кг?

76 : 100 = 0,76 — 1% от массы человека

Ответ: масса воды 53,2 кг

Задача 2. Цена товара понизилась на 40%, затем еще на 25%. На сколько процентов понизилась цена товара по сравнению с первоначальной ценой?

Обозначим первоначальную цену товара через х. После первого понижения цена станет равной.

Второе понижение цены составляет 25% от новой цены 0,6х, поэтому после второго понижения получим:

После двух понижений изменение цены составит:

Так как величина 0,55x составляет 55% от величины x, то цена товара понизилась на 55%.

Задача 3. Четыре пары брюк дешевле одного пальто на 8%. На сколько процентов пять пар брюк стоят дороже, чем одно пальто?

По условиям задачи стоимость четырех пар брюк — это 92% от стоимости пальто

Получается, что стоимость одной пары брюк — это 23% стоимости пальто.

Теперь умножим стоимость одной пары брюк на пять и узнаем, что пять пар брюк обойдутся в 115% стоимости пальто.

Ответ: пять пар брюк на 15% дороже, чем одно пальто.

Задача 4. Семья состоит из трех человек: муж, жена и дочь-студентка. Если зарплата мужа вырастет в два раза, общий доход семьи возрастет на 67%. Если дочери в три раза урежут стипендию, общий доход этой семьи уменьшится на 4%. Вычислить, какой процент в общий доход семьи приносит заработок жены.

По условиям задачи общий доход семьи напрямую зависит от доходов мужа. Благодаря увеличению зарплаты общий доход семьи вырастет на 67%. Значит, зарплата мужа составляет как раз 67% от общего дохода.

Если стипендия дочери уменьшится в три раза (т.е. на 1/3), останется 2/3 — это и есть 4%, на которые уменьшился бы семейных доход.

Можно составить простую пропорцию и выяснить, что раз 2/3 стипендии — это 4% дохода, то вся стипендия — это 6%.

А теперь отнимем от всего дохода вклад мужа и дочери и узнаем, какой процент составляет заработок жены в общем доходе семьи: 100 – 67 – 6 = 27.

Ответ: заработок жены составляет 27%.

Задача 5. В свежих абрикосах 90% влаги, а в сухофрукте кураге только 5%. Сколько килограммов абрикосов нужно, чтобы получить 20 килограммов кураги?

Исходя из условия, в абрикосах 10% питательного вещества, а в кураге в концентрированном виде — 95%.

Поэтому в 20 килограммах кураги 20 * 0,95 = 19 кг питательного вещества.

На вопрос задачи мы ответим, если разделим одинаковое количество питательного вещества, которое содержится в разных объемах свежих абрикосов и кураги, на его процентное содержание в абрикосах.

Ответ: 190 кг свежих абрикосов потребуется для изготовления 20 кг кураги.

Источник

как найти целое по его части? (формула)

Нахождение целого по части;
Чтобы найти число по величине данной его части,
делят эту величину на дробь, выражающую данную часть.

Пример :
Вес туши быка составляет 3/5 живого веса.
Каков должен быть живой вес быка, чтобы туша его весила 420кг?
Решение: 420 : 3/5 = 700 (кг).

Нахождение целого по части;
Чтобы найти число по величине данной его части,
делят эту величину на дробь, выражающую данную часть.

Пример :
Вес туши быка составляет 3/5 живого веса.
Каков должен быть живой вес быка, чтобы туша его весила 420кг?
Решение: 420 : 3/5 = 700 (кг).

Вот вам меленький стешок которы легко зопомнить:

Часть от целого найти
Не надо никого тревожить
Нам надо даное число
На эту дробь умножить

Нахождение целого по части;
Чтобы найти число по величине данной его части,
делят эту величину на дробь, выражающую данную часть.

Пример :
Вес туши быка составляет 3/5 живого веса.
Каков должен быть живой вес быка, чтобы туша его весила 420кг?
Решение: 420 : 3/5 = 700 (кг).

Нахождение целого по части;
Чтобы найти число по величине данной его части,
делят эту величину на дробь, выражающую данную часть.

Пример :
Вес туши быка составляет 3/5 живого веса.
Каков должен быть живой вес быка, чтобы туша его весила 420кг?
Решение: 420 : 3/5 = 700 (кг).

Источник

Урок 33 Бесплатно Решение задач на нахождение части от целого и целого по его части

На уроке математики, на улице, в магазине, в быту и профессиональной деятельности, науке и технике часто приходится встречаться с дробями и решать различные задачи с ними.

Как найти число зная чему равна часть этого числа. Смотреть фото Как найти число зная чему равна часть этого числа. Смотреть картинку Как найти число зная чему равна часть этого числа. Картинка про Как найти число зная чему равна часть этого числа. Фото Как найти число зная чему равна часть этого числа

Так, например, в кулинарии очень часто используют дробные числа, отмеряя те или иные ингредиенты в соответствии с рецептом: пол чайной ложки соли, треть стакана, четверть пачки, полкилограмма сахара и т.д.

Определяя время по часам, приходится находить часть от часа, от минуты, например, 30 минут равняется ½ часа, четверть часа (15 минут)- это ¼ часа, 30 секунд равняются ½ минуты, 15 секунд составляют ¼ минуты.

Как найти число зная чему равна часть этого числа. Смотреть фото Как найти число зная чему равна часть этого числа. Смотреть картинку Как найти число зная чему равна часть этого числа. Картинка про Как найти число зная чему равна часть этого числа. Фото Как найти число зная чему равна часть этого числа

В медицине и фармацевтике используют дробные числа.

В состав лекарственного средства чаще всего включают дробное количество различных действующих и вспомогательных веществ.

Как найти число зная чему равна часть этого числа. Смотреть фото Как найти число зная чему равна часть этого числа. Смотреть картинку Как найти число зная чему равна часть этого числа. Картинка про Как найти число зная чему равна часть этого числа. Фото Как найти число зная чему равна часть этого числа

Для корректного лечения врач устанавливает эффективную дозировку лекарственного препарата, которая иногда представлена в виде дробного числа.

Дозировку или концентрацию лекарственного средства приходится выражать в виде дроби: полтаблетки (1/2), четверть (1/4) таблетки и т.д.

Особенно важно учитывать количество медицинского препарата для пациентов детского возраста.

Часто дозировку лекарства для детей рассчитывают относительно взрослой дозы на основе данных о массе ребенка, количестве лет и др.

Обыкновенные дроби широко используются в строительстве и архитектуре.

Создавая надежную конструкцию, важно соблюдать соизмеримость и определенные соотношения частей сооружения.

Как найти число зная чему равна часть этого числа. Смотреть фото Как найти число зная чему равна часть этого числа. Смотреть картинку Как найти число зная чему равна часть этого числа. Картинка про Как найти число зная чему равна часть этого числа. Фото Как найти число зная чему равна часть этого числа

Начертить чертеж, построить здание, возвести мост, положить асфальт, приготовить бетонную смесь невозможно без знаний о дробях.

В спортивных состязаниях вам, наверное, не раз приходилось слышать такие фразы: «состоялся четверть финал» или «полуфинал чемпионата», «одна восьмая финала».

Дроби используют в искусстве, например, в музыке, живописи и др.

Одним из примеров внедрения дробей в музыкальное искусство может служить нотная грамота.

Еще древнегреческий ученый Пифагор установил связь между длительностью музыкального звучания и дробей.

Дроби применяют для обозначения длительности нот.

Так, например, существует длинная нота.

Кроме нее есть половинная нота, четвертная, восьмая, шестнадцатая и т.д.

Как найти число зная чему равна часть этого числа. Смотреть фото Как найти число зная чему равна часть этого числа. Смотреть картинку Как найти число зная чему равна часть этого числа. Картинка про Как найти число зная чему равна часть этого числа. Фото Как найти число зная чему равна часть этого числа

Такое обозначение нот удобно, так как явно видно насколько одна нота длиннее или короче другой.

Существует еще одна важная роль дробного числа в музыке.

Музыкальный размер (количество ритмических единиц в такте) так же обозначают в виде дроби (только без дробной черты) вначале нотной строки.

Как найти число зная чему равна часть этого числа. Смотреть фото Как найти число зная чему равна часть этого числа. Смотреть картинку Как найти число зная чему равна часть этого числа. Картинка про Как найти число зная чему равна часть этого числа. Фото Как найти число зная чему равна часть этого числа

С помощью музыкального размера музыканты понимают с каким ритмом и темпом нужно играть музыкальное произведение.

В картографии и географии с помощью дроби указывают масштаб карты.

Деление целого на доли встречается в юридической практике при делении наследства.

В повседневной жизни мы часто делим целое на части, например, плитку шоколада ломаем на дольки, чтобы угостить друзей, режем на кусочки торт на празднике, делим мандарин на дольки и т.д.

Мы можем привести бесконечное множество примеров деления чего-либо на части.

Сегодня на уроке вспомним, что называют долей числа и, что представляет собой дробь от числа.

Как найти число зная чему равна часть этого числа. Смотреть фото Как найти число зная чему равна часть этого числа. Смотреть картинку Как найти число зная чему равна часть этого числа. Картинка про Как найти число зная чему равна часть этого числа. Фото Как найти число зная чему равна часть этого числа

Научимся решать задачи, в которых необходимо находить часть от целого и целое по его части.

Рассмотрим алгоритм и примеры решения таких задач.

Нахождение части от целого

В математике дробью обозначают часть некоторой рассматриваемой величины, часть от целого.

Каждую равную часть одного целого называют долей числа.

Дробь представляет собой число, которое состоит из одной или нескольких долей (равных частей) целого.

Математическая запись обыкновенной дроби оформляется в виде двух чисел, разделенных чертой, которая называется дробной (она может быть горизонтальной и наклонной).

Число, стоящее над дробной чертой, называют числителем.

Числитель показывает, сколько долей взяли от целого.

Число, стоящее под дробной чертой, называют знаменателем.

Знаменатель показывает, на сколько всего равных долей разделили целое.

Зная целое, можно найти его часть.

Рассмотрим такую задачу.

Как найти число зная чему равна часть этого числа. Смотреть фото Как найти число зная чему равна часть этого числа. Смотреть картинку Как найти число зная чему равна часть этого числа. Картинка про Как найти число зная чему равна часть этого числа. Фото Как найти число зная чему равна часть этого числа

Ленту, длиной 12 дм, разрезали на 2 равные части.

Что значит разрезать на две равные части?

Это значит, что ленту нужно разделить на две доли, каждая из которых является половиной этой ленты.

Как найти число зная чему равна часть этого числа. Смотреть фото Как найти число зная чему равна часть этого числа. Смотреть картинку Как найти число зная чему равна часть этого числа. Картинка про Как найти число зная чему равна часть этого числа. Фото Как найти число зная чему равна часть этого числа

Итак, каждая доля- это половина всей ленты, по-другому такую часть от целого называют одна вторая часть ленты, обозначают ½.

В нашем примере половина всей ленты, т.е. одна вторая часть ее составляет 6 дм.

Запишем равенство: 12 ÷ 2 = 6 (дм).

Ленту такой же длины разделим на четыре равные части.

Как найти число зная чему равна часть этого числа. Смотреть фото Как найти число зная чему равна часть этого числа. Смотреть картинку Как найти число зная чему равна часть этого числа. Картинка про Как найти число зная чему равна часть этого числа. Фото Как найти число зная чему равна часть этого числа

Получим 4 доли, каждая из которых равна одной четвертой всей длины ленты, обозначается 1/4.

Четверть (одна четвертая) ленты составляет: 12 ÷ 4 = 3 (дм).

Попробуем найти одну шестую ленты все той же длины- 12 дм.

Как найти число зная чему равна часть этого числа. Смотреть фото Как найти число зная чему равна часть этого числа. Смотреть картинку Как найти число зная чему равна часть этого числа. Картинка про Как найти число зная чему равна часть этого числа. Фото Как найти число зная чему равна часть этого числа

1/6 доля этой ленты будет составлять: 12 ÷ 6 = 2 (дм).

Итак, нам становится ясно, чтобы найти долю от числа, необходимо разделить это число на количество долей (равных частей).

Рассмотрим ситуацию посложней.

Полоску бумаги, длиной 15 см, разделим на 5 равных частей (пять долей).

Как найти число зная чему равна часть этого числа. Смотреть фото Как найти число зная чему равна часть этого числа. Смотреть картинку Как найти число зная чему равна часть этого числа. Картинка про Как найти число зная чему равна часть этого числа. Фото Как найти число зная чему равна часть этого числа

Определим, чему будет равны \(\mathbf<\frac<3><5>>\) этой полоски бумаги.

Одна доля (\(\mathbf<\frac<1><5>>\) этой полоски)- это 15 ÷ 5 = 3 (см).

Возьмем три таких доли.

Так как одна доля составляет 3 см, то три доли будут равны 3 ∙ 3 = 9 (см).

В данном случае получилось, что три пятых полоски бумаги составляют 9 см.

Сформулируем правило нахождения части от целого.

Чтобы найти несколько долей целого (дробь от числа), необходимо найти величину одной доли, затем умножить ее на количество долей.

Запишем алгоритм нахождения части от числа (несколько долей целого).

1. Найти величину одной доли.

2. Величину одной доли умножить на количество взятых долей.

В буквенном виде данное правило можно представить так:

Пусть А— это исходное число.

В— неизвестная часть числа А, выраженная дробью \(\mathbf<\frac>\).

m— числитель, показывает сколько долей взяли.

n— знаменатель, показывает на сколько долей разделили число А.

Чтобы найти часть числа А, необходимо это число А разделить на знаменатель (n) и умножить на числитель (m) дроби, которая выражает эту часть.

Как найти число зная чему равна часть этого числа. Смотреть фото Как найти число зная чему равна часть этого числа. Смотреть картинку Как найти число зная чему равна часть этого числа. Картинка про Как найти число зная чему равна часть этого числа. Фото Как найти число зная чему равна часть этого числа

В качестве примера рассмотрим решение нескольких задач.

Задача №1.

Туристы за все время своего путешествия из пункта А в пункт В должны пройти 54 км.

Туристы прошли \(\mathbf<\frac<1><2>>\) всего пути по лесу.

Сколько километров прошли туристы по лесу? Сколько им осталось пройти?

Чтобы найти долю от числа, необходимо число разделить на количество долей.

Прошли \(\mathbf<\frac<1><2>>\) всего пути- это значит туристы преодолели половину своего пути.

Разделим весь путь на 2 равные доли, т.е. на 2, в результате получим \(\mathbf<\frac<1><2>>\) пути, которую туристы прошли по лесу.

Этот путь будет составлять: 54 ÷ 2 = 27 (км).

Определим путь, который им осталось пройти, для этого из общего пути вычтем пройденный по лесу путь:

Ответ: 27 (км), 27 (км).

Задача №2

За три дня туристы прошли 54 километра.

За первый день они прошли половину всего пути.

За второй день преодолели \(\mathbf<\frac<2><3>>\) оставшегося пути.

Сколько километров туристы прошли в каждый из трех дней?

Весь трехдневный путь туристов составляет 54 км.

Первый день туристы прошли половину- это \(\mathbf<\frac<1><2>>\) всего пути.

Выше в задаче №1 мы уже находили \(\mathbf<\frac<1><2>>\) от 54 (км), у нас получился следующий результат:

54 ÷ 2 = 27 (км) прошли туристы в первый день.

Так как в первый день пройдена половина пути, то вторая половина- это оставшийся путь.

Второй день- это \(\mathbf<\frac<2><3>>\) оставшегося пути, т.е. \(\mathbf<\frac<2><3>>\) от 27 (км).

Чтобы найти дробь от числа, необходимо найти величину одной доли, затем умножить ее на количество частей (долей).

Найдем величину одной доли, для этого весь оставшийся путь (27 км) разделим на знаменатель дроби (в нашем случае это число 3), данное выражение будет описываться выражением 27 ÷ 3.

Полученный результат умножим на количество, пройденных туристами долей, на которые нам указывает числитель дроби (он равен 2).

В результате получим равенство:

27 ÷ 3 ∙ 2 = 9 ∙ 2 = 18 (км) туристы прошли во второй день.

Так как во второй день туристы прошли 18 км от пути, оставшегося после первого туристического дня (т.е. 18 км из 27 км), то за третий день им осталось пройти:

Проверим полученные результаты.

Найдем весь туристический путь за три дня, он должен быть равен 54 км.

Для этого сложим путь первого, второго и третьего дня.

27 + 18 + 9 = 45 + 9 = 54 (км) прошли туристы за три дня.

Задача решена верно.

Ответ: 27 (км), 18 (км), 9 (км).

Пройти тест и получить оценку можно после входа или регистрации

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *