Математика что такое кратное
Урок 1 Бесплатно Делители и кратные
Операция деления известна с давних времен.
Привычные нам сегодня обозначения операции деления появлялись постепенно, в более древние времена люди использовали другие знаки.
Первый из символов ( / ), в обиходе косая черта, впервые был применен в 1631 году в одной из работ англичанина Уильяма Отреда.
Со временем в математике стали использовать и знак ( : ). Его в своих работах использовал немецкий математик Готфрид Вильгельм Лейбниц (1646—1716)
При выполнении операции деления используют три математических составляющих:
Сегодня мы познакомимся с делителями и на связанном с ними понятии кратных.
Делители и кратные
Допустим, у вас есть 30 конфет и их надо разделить поровну шести друзьям.
В этом случае 6 друзей получат по 5 конфет, потому что 30 : 6 = 5
Если любое натуральное число делится без остатка на второе натуральное число, то первое называется кратным, а второе называют делителем.
Другими словами, 30 кратно 6, а 6 это делитель 30.
Могут быть и другие варианты решения задачи, которые зависят от данного нам условия.
Если друзей будет 7, тогда раздать всем равное количество конфет не получится, так как 30 без остатка на 7 не делится.
Значит, 30 не кратно 7, и 7 не является делителем 30
Натуральное число, на которое делится без остатка другое число, называется его делителем.
Само число 15 имеет четыре делителя: 1; 3; 5; 15, так как на каждое из этих чисел оно делится без остатка.
Натуральное число, которое делится на другое без остатка, называется его кратным.
Любое натуральное число имеет бесконечно много кратных.
Наименьшим из кратных натурального числа является само это число.
Например, кратными 4 будут числа: 4; 8; 12; 16; 20 и т.д.
У меня есть дополнительная информация к этой части урока!
Существуют числа, равные сумме всех их делителей, не считая самого числа.
Его делители 1, 2, 3.
Само число 6 не учитываем.
Сложив их, получим в сумме 6
К числам с таким свойством можно отнести еще 28 или 496
Пройти тест и получить оценку можно после входа или регистрации
Использование понятий делителя и кратного при решении примеров и задач
Любые математические понятия используются при решении примеров и задач, ответах на вопросы из жизни.
Разберем некоторые из них подробнее.
Пример 1
На сколько равных кучек можно разделить 24 ореха?
Решение:
Нужно выяснить все делители числа 24
Такими будут числа: 1; 2; 3; 4; 6; 8; 12; 24
Каждое из этих чисел будет являться ответом на поставленный вопрос, таким образом:
1 кучка из 24 орехов
2 кучки по 12 орехов
3 кучки по 8 орехов и т.д.
Пример 2
Напишите все двузначные числа, кратные 44
Решение:
Еще нам дано условие, что такие числа должны быть двузначными.
Значит, это два числа 44 и 88.
Оба они делятся на 44 без остатка, в чем можно легко убедиться: 44 : 44 = 1; 88 : 44 = 2
Пример 3
Какое число и кратно 15, и является делителем 15?
Решение:
Оно кратно самому себе и является для себя делителем.
Пример 4
В строю 300 солдат. Можно ли их разделить на 7 равных групп для проведения физической подготовки?
Решение:
Чтобы проверить, можно ли разделить 300 солдат на 7 равных групп, поделим число 300 на 7.
Имеем: 300 : 7 = 42 и в остатке 6. То есть 300 не делится нацело на 7.
Значит, разбить 300 солдат на 7 равных групп не получится.
Пример 5
Докажите, что число 70525 кратно числу 217.
Доказательство:
Выполним деление 70525 на 217 уголком.
Видим, что деление выполнено без остатка, значит, число 70525 кратно числу 217.
У меня есть дополнительная информация к этой части урока!
Делителем любого натурального числа является единица.
И правда, ведь на единицу делится любое натуральное число без остатка
Пройти тест и получить оценку можно после входа или регистрации
Интересная информация
Раньше алгоритм деления в России выглядел совершенно иначе и не имел ничего общего с современным видом.
Например, деление могло получиться в виде полумесяца или по форме напоминать геометрическую фигуру- ромб.
Пусть требуется разделить 598432 на 678
Вот как выглядела запись деления:
1792
5603
5984/
5424
5424
1356
598432 верно разделено
Или разделить 9649378 на 5634:
59417
4015530
9649378
5634444
56333
Заключительный тест
Пройти тест и получить оценку можно после входа или регистрации
Наименьшее общее кратное
Общее кратное
Число может быть кратно не одному, а сразу нескольким числам, такое число называется общим кратным данных чисел.
Числу 3 кратны числа: 6, 9, 12, 15 и т. д.
Числу 4 кратны числа: 8, 12, 16, 20 и т. д.
Можно заметить, что одно и тоже число (12) делится нацело сразу на оба числа 3 и 4. Следовательно, число 12 есть общее кратное чисел 3 и 4.
Общее кратное чисел — это любое число, которое делится без остатка на каждое из данных чисел.
Найти общее кратное нескольких натуральных чисел достаточно легко, можно просто перемножить данные числа, полученное произведение и будет их общим кратным.
Пример. Найти общее кратное для чисел 2, 3, 4, 6.
Число 144 — общее кратное чисел 2, 3, 4 и 6.
Для любого количества натуральных чисел существует бесконечно много кратных.
Пример. Для чисел 12 и 20 кратными будут числа: 60, 120, 180, 240 и т. д. Все они являются общими кратными для чисел 12 и 20.
Наименьшее общее кратное
Наименьшее общее кратное (НОК) нескольких чисел — это самое маленькое натуральное число, которое делится без остатка на каждое из этих чисел.
Пример. Наименьшим общим кратным чисел 3, 4 и 9 является число 36, никакое другое число меньше 36 не делится одновременно на 3, 4 и 9 без остатка.
Наименьшее общее кратное записывается так:
Числа в круглых скобках могут быть указаны в любом порядке.
Пример. Запишем наименьшее общее кратное чисел 3, 4 и 9:
Как найти НОК
Рассмотрим два способа нахождения наименьшего общего кратного: с помощью разложения чисел на простые множители и нахождение НОК через НОД.
С помощью разложения на простые множители
Чтобы найти НОК нескольких натуральных чисел, надо разложить эти числа на простые множители, затем взять из этих разложений каждый простой множитель с наибольшим показателем степени и перемножить эти множители между собой.
Пример. Найдите наименьшее общее кратное двух чисел 99 и 54.
Решение: разложим каждое из этих чисел на простые множители:
Наименьшее общее кратное должно делиться на 99, значит, в его состав должны входить все множители числа 99. Далее НОК должно делиться и на 54, т. е. в его состав должны входить множители и этого числа.
Выпишем из этих разложений каждый простой множитель с наибольшим показателем степени и перемножим эти множители между собой. Получим следующее произведение:
Это и есть наименьшее общее кратное данных чисел. Никакое другое число меньше 594 не делится нацело на 99 и 54.
Ответ: НОК (99, 54) = 594.
Так как взаимно простые числа не имеют одинаковых простых множителей, то их наименьшее общее кратное равно произведению этих чисел.
Пример. Найдите наименьшее общее кратное двух чисел 12 и 49.
Решение: разложим каждое из этих чисел на простые множители:
12 = 2 · 2 · 3 = 2 2 · 3,
Применяя к этому случаю правило, мы придём к заключению, что взаимно простые числа надо просто перемножить:
2 2 · 3 · 7 2 = 12 · 49 = 980.
Ответ: НОК (12, 49) = 980.
Таким же образом надо поступать, когда нужно найти наименьшее общее кратное простых чисел.
Пример. Найдите наименьшее общее кратное чисел 5, 7 и 13.
Решение: так как данные числа являются простыми, то просто перемножим их:
Ответ: НОК (5, 7, 13) = 455.
Если большее из данных чисел делится на все остальные числа, то это число и будет наименьшим общим кратным данных чисел.
Пример. Найдите наименьшее общее кратное чисел 24, 12 и 4.
Решение: разложим каждое из этих чисел на простые множители:
24 = 2 · 2 · 2 · 3 = 2 3 · 3,
12 = 2 · 2 · 3 = 2 2 · 3,
Можно заметить, что разложение большего числа содержит все множители остальных чисел, значит большее из этих чисел делится на все остальные числа (в том числе и само на себя) и является наименьшим общим кратным:
Ответ: НОК (24, 12, 4) = 24.
Нахождение НОК через НОД
НОК двух натуральных чисел равно произведению этих чисел, поделённого на их НОД.
Правило в общем виде:
Пример. Найдите наименьшее общее кратное двух чисел 99 и 54.
Теперь мы можем вычислить НОК этих чисел по формуле:
НОК (99, 54) = 99 · 54 : НОД (99, 54) = 5346 : 9 = 594.
Ответ: НОК (99, 54) = 594.
Чтобы найти НОК трёх или более чисел используется следующий порядок действий:
Пример. Найдите наименьшее общее кратное чисел 8, 12 и 9.
Решение: сначала находим наибольший общий делитель любых двух из этих чисел, например, 12 и 8:
Вычисляем их НОК по формуле:
НОК (12, 8) = 12 · 8 : НОД (12, 8) = 96 : 4 = 24.
Теперь найдём НОК числа 24 и оставшегося числа 9. Их НОД:
Вычисляем НОК по формуле:
НОК (24, 9) = 24 · 9 : НОД (24, 9) = 216 : 3 = 72.
Ответ: НОК (8, 12, 9) = 72.
Калькулятор НОК
Наименьшее общее кратное (НОК): определение, примеры и свойства
Приступим к изучению наименьшего общего кратного двух и более чисел. В разделе мы дадим определение термина, рассмотрим теорему, которая устанавливает связь между наименьшим общим кратным и наибольшим общим делителем, приведем примеры решения задач.
Общие кратные – определение, примеры
В данной теме нас будет интересовать только общие кратные целых чисел, отличных от нуля.
Общее кратное целых чисел – это такое целое число, которое кратно всем данным числам. Фактически, это любое целое число, которое можно разделить на любое из данных чисел.
Определение общих кратных чисел относится к двум, трем и большему количеству целых чисел.
0 является общим кратным для любого множества целых чисел, отличных от нуля.
Для всех ли чисел можно найти НОК?
Общее кратное можно найти для любых целых чисел.
Сколько всего общих кратных могут иметь данные целые числа?
Группа целых чисел может иметь большое количество общих кратных. Фактически, их число бесконечно.
Наименьшее общее кратное (НОК) – определение, обозначение и примеры
Вспомним понятие наименьшего числа из данного множества чисел, которое мы рассматривали в разделе «Сравнение целых чисел». С учетом этого понятия сформулируем определение наименьшего общего кратного, которое имеет среди всех общих кратных наибольшее практическое значение.
Наименьшее общее кратное данных целых чисел – это наименьшее положительное общее кратное этих чисел.
Не для всех групп данных чисел наименьшее общее кратное очевидно. Часто его приходится вычислять.
Связь между НОК и НОД
Наименьшее общее кратное и наибольший общий делитель связаны между собой. Взаимосвязь между понятиями устанавливает теорема.
Установление связи между НОК и НОД позволяет находить наименьшее общее кратное через наибольший общий делитель двух и более данных чисел.
Теорема имеет два важных следствия:
Наименьшее общее кратное трех и большего количества чисел
Для того, чтобы найти наименьшее общее кратное нескольких чисел, необходимо последовательно найти НОК двух чисел.
Доказать верность второй теоремы нам поможет первое следствие из первой теоремы, рассмотренной в данной теме. Рассуждения строятся по следующему алгоритму:
Кратное
Делимость — одно из основных понятий арифметики и теории чисел, связаное с операцией деления.
Содержание
Определение
Обозначения
Связанные определения
Свойства
Число делителей
Обобщения
Понятие делимости обобщается на произвольные кольца, например кольцо многочленов.
См. также
Полезное
Смотреть что такое «Кратное» в других словарях:
КРАТНОЕ — число, делящееся на данное целое число без остатка, напр. 12 кратно 3. Общее кратное нескольких целых чисел число, делящееся на каждое из них в отдельности, напр. 180 общее кратное чисел 30, 18, 2. При арифметических действиях особое значение… … Большой Энциклопедический словарь
кратное — ого; ср. Целое число, делящееся на данное без остатка. Шесть к. чисел два и три. Наименьшее общее к. нескольких чисел. * * * кратное число, делящееся на данное целое число без остатка, например 12 кратно 3. Общее кратное нескольких целых чисел … … Энциклопедический словарь
Кратное — натурального (целого положительного) числа а, натуральное число, делящееся на а без остатка. Так, 156 есть К. 13, тогда как 108 не является К. 13. Число n, которое делится на каждое из чисел а, b. m, называется общим К. этих чисел. Из … Большая советская энциклопедия
Кратное — ср. Целое число, делящееся на какое либо число без остатка. Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 … Современный толковый словарь русского языка Ефремовой
КРАТНОЕ — число, делящееся на данное целое число без остатка, напр. 12 кратно 3. Общее К. неск. целых чисел число, делящееся на каждое из них в отдельности, напр. 180 общее К. чисел 30, 18, 2. При арифметич. действиях особое значение имеет наименьшее общее … Естествознание. Энциклопедический словарь
кратное — кр атное, ого … Русский орфографический словарь
кратное — ого; ср. Целое число, делящееся на данное без остатка. Шесть кра/тное чисел два и три. Наименьшее общее кра/тное нескольких чисел … Словарь многих выражений
кратное (число) — кратный многократный множественный составной параллельный — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы… … Справочник технического переводчика
Наименьшее общее кратное
Для того, чтобы находить общий знаменатель при сложении и вычитании дробей с разными знаменателями необходимо знать и уметь рассчитывать наименьшее общее кратное (НОК).
Кратное числу « a » — это число, которое само делится на число « a » без остатка.
Числа кратные 8 (то есть, эти числа разделятся на 8 без остатка): это числа 16, 24, 32 …
Кратные 9: 18, 27, 36, 45 …
Чисел, кратных данному числу a бесконечно много, в отличии от делителей этого же числа. Делителей — конечное количество.
Общим кратным двух натуральных чисел называется число, которое делится на оба эти числа нацело.
Наименьшим общим кратным (НОК) двух и более натуральных чисел называется наименьшее натуральное число, которое само делится нацело на каждое из этих чисел.
Как найти НОК
НОК можно найти и записать двумя способами.
Первый способ нахождения НОК
Данный способ обычно применяется для небольших чисел.
Второй способ нахождения НОК
Этот способ удобно использовать, чтобы найти НОК для трёх и более чисел.
Количество одинаковых множителей в разложениях чисел может быть разное.
24 = 2 · 2 · 2 · 3
НОК (12, 16, 24) = 2 · 2 · 2 · 3 · 2 = 48
Ответ: НОК (12, 16, 24) = 48
Особые случаи нахождения НОК
На нашем сайте вы также можете с помощью специального калькулятора найти наименьшее общее кратное онлайн, чтобы проверить свои вычисления.