Миллиард триллиард что дальше

Названия больших чисел

Существует десять цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Числа состоят из цифр. Число 52 состоит из двух цифр: 5 и 2. Числа с 1 впереди и последующими нулями имеют названия. Всем известны: 10 — десять, 100 — сто, 1000 — тысяча, 1 000 000 — миллион. Так как большие числа с большим числом нулей записывать неудобно, используют сокращения в виде степеней: запись 10 11 означает число с 11-ю нулями, запись 10 52 означает число с 52-мя нулями и т.д. Приведем названия чисел с десятками и сотнями нулей.

Названия «круглых» чисел, которые можно встретить в школьной программе:
1 000 000 — миллион (6 нулей)
1 000 000 000 — миллиард или биллион (9 нулей)
1 000 000 000 000 — триллион (12 нулей)
1 000 000 000 000 000 — квадриллион (15 нулей)
1 000 000 000 000 000 000 — квинтиллион (18 нулей)
1 000 000 000 000 000 000 000 — секстиллион (21 нуль)
1 000 000 000 000 000 000 000 000 — септиллион (24 нуля)
1 000 000 000 000 000 000 000 000 000 — октиллион (27 нулей)
1 000 000 000 000 000 000 000 000 000 000 — нониллион (30 нулей)
1 000 000 000 000 000 000 000 000 000 000 000 — дециллион (33 нуля)

Еще некоторые примеры интересных названий:
10 100 — гугол, googol (100 нулей)
10 10 100 — гуголплекс, googolplex (десять в степени гугол)
10 140 — асанкхейя, asankhyeya или сто квинквадрагинтиллионов
10 303 — центиллион, centillion
10 3003 — миллиллион, millillion
10 3000003 — милли-миллиллион, milli-millillion

Самого большого числа в мире не существует, так как любое большое число всегда можно увеличить, умножить, возвести в степень, и получится другое большее число. Бесконечность не является числом.

Из известных самых больших чисел, имеющих название (математическое доказательство) можно выделить: число TREE(3), число SCG(13), число Лоудера, число Мозера, число Скьюза, число Райо, число Грэма, инфитеиплеон.

Таблица больших чисел с указанием количества нулей и названиями на русском и английском.

Источник

Миллиард триллиард что дальше. Смотреть фото Миллиард триллиард что дальше. Смотреть картинку Миллиард триллиард что дальше. Картинка про Миллиард триллиард что дальше. Фото Миллиард триллиард что дальшеmasterok

Мастерок.жж.рф

Хочу все знать

Миллиард триллиард что дальше. Смотреть фото Миллиард триллиард что дальше. Смотреть картинку Миллиард триллиард что дальше. Картинка про Миллиард триллиард что дальше. Фото Миллиард триллиард что дальше

“Я вижу скопления смутных чисел, которые скрывается там, в темноте, за небольшим пятном света, которое дает свеча разума. Они шепчутся друг с другом; сговариваясь кто знает о чем. Возможно, они нас не очень любят за захват их меньших братишек нашими умами. Или, возможно, они просто ведут однозначный числовой образ жизни, там, за пределами нашего понимания’’.
Дуглас Рэй

Каждого рано или поздно мучает вопрос, а какое же самое большое число. На вопрос ребенка можно ответить миллион. А что дальше? Триллион. А еще дальше? На самом деле, ответ на вопрос какие же самые большие числа прост. К самому большому числу просто стоит добавить единицу, как оно уже не будет самым большим. Процедуру эту можно продолжать до бесконечности. Т.е. получается нет самого большого числа в мире? Это бесконечность?

Существуют две системы наименования чисел — американская и английская.

Миллиард триллиард что дальше. Смотреть фото Миллиард триллиард что дальше. Смотреть картинку Миллиард триллиард что дальше. Картинка про Миллиард триллиард что дальше. Фото Миллиард триллиард что дальше

Миллиард триллиард что дальше. Смотреть фото Миллиард триллиард что дальше. Смотреть картинку Миллиард триллиард что дальше. Картинка про Миллиард триллиард что дальше. Фото Миллиард триллиард что дальше

Из английской системы в русский язык перешло только число миллиард (10 9 ), которое всё же было бы правильнее называть так, как его называют американцы — биллионом, так как у нас принята именно американская система. Но кто у нас в стране что-то делает по правилам! 😉 Кстати, иногда в русском языке употребляют и слово триллиард (можете сами в этом убедиться, запустив поиск в Гугле или Яндексе ) и означает оно, судя по всему, 1000 триллионов, т.е. квадриллион.

Кроме чисел, записанных при помощи латинских префиксов по американской или англйской системе, известны и так называемые внесистемные числа, т.е. числа, которые имеют свои собственные названия безо всяких латинских префиксов. Таких чисел существует несколько, но подробнее о них я расскажу чуть позже.

Вернемся к записи при помощи латинских числительных. Казалось бы, что ими можно записывать числа до бессконечности, но это не совсем так. Сейчас объясню почему. Посмотрим для начала как называются числа от 1 до 10 33 :

Миллиард триллиард что дальше. Смотреть фото Миллиард триллиард что дальше. Смотреть картинку Миллиард триллиард что дальше. Картинка про Миллиард триллиард что дальше. Фото Миллиард триллиард что дальше

Миллиард триллиард что дальше. Смотреть фото Миллиард триллиард что дальше. Смотреть картинку Миллиард триллиард что дальше. Картинка про Миллиард триллиард что дальше. Фото Миллиард триллиард что дальше

Самое маленькое такое число — это мириада (оно есть даже в словаре Даля), которое означает сотню сотен, то есть — 10 000. Слово это, правда, устарело и практически не используется, но любопытно, что широко используется слово «мириады», которое означает вовсе не определённое число, а бесчисленное, несчётное множество чего-либо. Считается, что слово мириада (англ. myriad) пришло в европейские языки из древнего Египта.

Миллиард триллиард что дальше. Смотреть фото Миллиард триллиард что дальше. Смотреть картинку Миллиард триллиард что дальше. Картинка про Миллиард триллиард что дальше. Фото Миллиард триллиард что дальше

Гугол (от англ. googol) — это число десять в сотой степени, то есть единица со ста нулями. О «гуголе» впервые написал в 1938 году в статье «New Names in Mathematics» в январском номере журнала Scripta Mathematica американский математик Эдвард Каснер (Edward Kasner). По его словам, назвать «гуголом» большое число предложил его девятилетний племянник Милтон Сиротта (Milton Sirotta). Общеизвестным же это число стало благодаря, названной в честь него, поисковой машине Google. Обратите внимание, что «Google» — это торговая марка, а googol — число.

Миллиард триллиард что дальше. Смотреть фото Миллиард триллиард что дальше. Смотреть картинку Миллиард триллиард что дальше. Картинка про Миллиард триллиард что дальше. Фото Миллиард триллиард что дальше
Эдвард Каснер (Edward Kasner).

Миллиард триллиард что дальше. Смотреть фото Миллиард триллиард что дальше. Смотреть картинку Миллиард триллиард что дальше. Картинка про Миллиард триллиард что дальше. Фото Миллиард триллиард что дальше

Words of wisdom are spoken by children at least as often as by scientists. The name «googol» was invented by a child (Dr. Kasner’s nine-year-old nephew) who was asked to think up a name for a very big number, namely, 1 with a hundred zeros after it. He was very certain that this number was not infinite, and therefore equally certain that it had to have a name. At the same time that he suggested «googol» he gave a name for a still larger number: «Googolplex.» A googolplex is much larger than a googol, but is still finite, as the inventor of the name was quick to point out.

Mathematics and the Imagination (1940) by Kasner and James R. Newman.

Миллиард триллиард что дальше. Смотреть фото Миллиард триллиард что дальше. Смотреть картинку Миллиард триллиард что дальше. Картинка про Миллиард триллиард что дальше. Фото Миллиард триллиард что дальше

Как вы понимаете чем больше в числе степеней, тем сложнее понять какое из чисел больше. Например, посмотрев на числа Скьюза, без специальных вычислений практически невозможно понять, какое из этих двух чисел больше. Таким образом, для сверхбольших чисел пользоваться степенями становится неудобно. Мало того, можно придумать такие числа (и они уже придуманы), когда степени степеней просто не влезают на страницу. Да, что на страницу! Они не влезут, даже в книгу, размером со всю Вселенную! В таком случае встаёт вопрос как же их записывать. Проблема, как вы понимаете разрешима, и математики разработали несколько принципов для записи таких чисел. Правда, каждый математик, кто задавался этой проблемой придумывал свой способ записи, что привело к существованию нескольких, не связанных друг с другом, способов для записи чисел — это нотации Кнута, Конвея, Стейнхауза и др.

Рассмотрим нотацию Хьюго Стенхауза (H. Steinhaus. Mathematical Snapshots, 3rd edn. 1983), которая довольно проста. Стейн хауз предложил записывать большие числа внутри геометрических фигур — треугольника, квадрата и круга:

Математик Лео Мозер доработал нотацию Стенхауза, которая была ограничена тем, что если требовалаось записывать числа много больше мегистона, возникали трудности и неудобства, так как приходилось рисовать множество кругов один внутри другого. Мозер предложил после квадратов рисовать не круги, а пятиугольники, затем шестиугольники и так далее. Также он предложил формальную запись для этих многоугольников, чтобы можно было записывать числа, не рисуя сложных рисунков. Нотация Мозера выглядит так:

Миллиард триллиард что дальше. Смотреть фото Миллиард триллиард что дальше. Смотреть картинку Миллиард триллиард что дальше. Картинка про Миллиард триллиард что дальше. Фото Миллиард триллиард что дальше

Но и мозер не самое большое число. Самым большим числом, когда-либо применявшимся в математическом доказательстве, является предельная величина, известная как число Грэма (Graham’s number), впервые использованная в 1977 года в доказательстве одной оценки в теории Рамсея. Оно связано с бихроматическими гиперкубами и не может быть выражено без особой 64-уровневой системы специальных математических символов, введённых Кнутом в 1976 году.

К сожалению, число записанное в нотации Кнута нельзя перевести в запись по системе Мозера. Поэтому придётся объяснить и эту систему. В принципе в ней тоже нет ничего сложного. Дональд Кнут (да, да, это тот самый Кнут, который написал «Искусство программирования» и создал редактор TeX) придумал понятие сверхстепень, которое предложил записывать стрелками, направленными вверх:

В общем виде это выглядит так:

Думаю, что всё понятно, поэтому вернёмся к числу Грэма. Грэм предложил, так называемые G-числа:

Число G 63 стало называться числом Грэма (обозначается оно часто просто как G). Это число является самым большим известным в мире числом и занесёно даже в «Книгу рекордов Гинесса». А, вот тут лежит доказательство, что число Грэма больше числа Мозера.

Так есть числа больше, чем число Грэма? Есть, конечно, для начала есть число Грэма + 1. Что касается значащего числа… хорошо, есть некоторые дьявольски сложные области математики (в частности, области, известной как комбинаторика) и информатики, в которых встречаются числа даже большие, чем число Грэма. Но мы почти достигли предела того, что можно разумно и понятно объяснить.

Источник

Миллиард триллиард что дальше. Смотреть фото Миллиард триллиард что дальше. Смотреть картинку Миллиард триллиард что дальше. Картинка про Миллиард триллиард что дальше. Фото Миллиард триллиард что дальшеmasterok

Мастерок.жж.рф

Хочу все знать

Миллиард триллиард что дальше. Смотреть фото Миллиард триллиард что дальше. Смотреть картинку Миллиард триллиард что дальше. Картинка про Миллиард триллиард что дальше. Фото Миллиард триллиард что дальше

“Я вижу скопления смутных чисел, которые скрывается там, в темноте, за небольшим пятном света, которое дает свеча разума. Они шепчутся друг с другом; сговариваясь кто знает о чем. Возможно, они нас не очень любят за захват их меньших братишек нашими умами. Или, возможно, они просто ведут однозначный числовой образ жизни, там, за пределами нашего понимания’’.
Дуглас Рэй

Каждого рано или поздно мучает вопрос, а какое же самое большое число. На вопрос ребенка можно ответить миллион. А что дальше? Триллион. А еще дальше? На самом деле, ответ на вопрос какие же самые большие числа прост. К самому большому числу просто стоит добавить единицу, как оно уже не будет самым большим. Процедуру эту можно продолжать до бесконечности. Т.е. получается нет самого большого числа в мире? Это бесконечность?

Существуют две системы наименования чисел — американская и английская.

Миллиард триллиард что дальше. Смотреть фото Миллиард триллиард что дальше. Смотреть картинку Миллиард триллиард что дальше. Картинка про Миллиард триллиард что дальше. Фото Миллиард триллиард что дальше

Миллиард триллиард что дальше. Смотреть фото Миллиард триллиард что дальше. Смотреть картинку Миллиард триллиард что дальше. Картинка про Миллиард триллиард что дальше. Фото Миллиард триллиард что дальше

Из английской системы в русский язык перешло только число миллиард (10 9 ), которое всё же было бы правильнее называть так, как его называют американцы — биллионом, так как у нас принята именно американская система. Но кто у нас в стране что-то делает по правилам! 😉 Кстати, иногда в русском языке употребляют и слово триллиард (можете сами в этом убедиться, запустив поиск в Гугле или Яндексе ) и означает оно, судя по всему, 1000 триллионов, т.е. квадриллион.

Кроме чисел, записанных при помощи латинских префиксов по американской или англйской системе, известны и так называемые внесистемные числа, т.е. числа, которые имеют свои собственные названия безо всяких латинских префиксов. Таких чисел существует несколько, но подробнее о них я расскажу чуть позже.

Вернемся к записи при помощи латинских числительных. Казалось бы, что ими можно записывать числа до бессконечности, но это не совсем так. Сейчас объясню почему. Посмотрим для начала как называются числа от 1 до 10 33 :

Миллиард триллиард что дальше. Смотреть фото Миллиард триллиард что дальше. Смотреть картинку Миллиард триллиард что дальше. Картинка про Миллиард триллиард что дальше. Фото Миллиард триллиард что дальше

Миллиард триллиард что дальше. Смотреть фото Миллиард триллиард что дальше. Смотреть картинку Миллиард триллиард что дальше. Картинка про Миллиард триллиард что дальше. Фото Миллиард триллиард что дальше

Самое маленькое такое число — это мириада (оно есть даже в словаре Даля), которое означает сотню сотен, то есть — 10 000. Слово это, правда, устарело и практически не используется, но любопытно, что широко используется слово «мириады», которое означает вовсе не определённое число, а бесчисленное, несчётное множество чего-либо. Считается, что слово мириада (англ. myriad) пришло в европейские языки из древнего Египта.

Миллиард триллиард что дальше. Смотреть фото Миллиард триллиард что дальше. Смотреть картинку Миллиард триллиард что дальше. Картинка про Миллиард триллиард что дальше. Фото Миллиард триллиард что дальше

Гугол (от англ. googol) — это число десять в сотой степени, то есть единица со ста нулями. О «гуголе» впервые написал в 1938 году в статье «New Names in Mathematics» в январском номере журнала Scripta Mathematica американский математик Эдвард Каснер (Edward Kasner). По его словам, назвать «гуголом» большое число предложил его девятилетний племянник Милтон Сиротта (Milton Sirotta). Общеизвестным же это число стало благодаря, названной в честь него, поисковой машине Google. Обратите внимание, что «Google» — это торговая марка, а googol — число.

Миллиард триллиард что дальше. Смотреть фото Миллиард триллиард что дальше. Смотреть картинку Миллиард триллиард что дальше. Картинка про Миллиард триллиард что дальше. Фото Миллиард триллиард что дальше
Эдвард Каснер (Edward Kasner).

Миллиард триллиард что дальше. Смотреть фото Миллиард триллиард что дальше. Смотреть картинку Миллиард триллиард что дальше. Картинка про Миллиард триллиард что дальше. Фото Миллиард триллиард что дальше

Words of wisdom are spoken by children at least as often as by scientists. The name «googol» was invented by a child (Dr. Kasner’s nine-year-old nephew) who was asked to think up a name for a very big number, namely, 1 with a hundred zeros after it. He was very certain that this number was not infinite, and therefore equally certain that it had to have a name. At the same time that he suggested «googol» he gave a name for a still larger number: «Googolplex.» A googolplex is much larger than a googol, but is still finite, as the inventor of the name was quick to point out.

Mathematics and the Imagination (1940) by Kasner and James R. Newman.

Миллиард триллиард что дальше. Смотреть фото Миллиард триллиард что дальше. Смотреть картинку Миллиард триллиард что дальше. Картинка про Миллиард триллиард что дальше. Фото Миллиард триллиард что дальше

Как вы понимаете чем больше в числе степеней, тем сложнее понять какое из чисел больше. Например, посмотрев на числа Скьюза, без специальных вычислений практически невозможно понять, какое из этих двух чисел больше. Таким образом, для сверхбольших чисел пользоваться степенями становится неудобно. Мало того, можно придумать такие числа (и они уже придуманы), когда степени степеней просто не влезают на страницу. Да, что на страницу! Они не влезут, даже в книгу, размером со всю Вселенную! В таком случае встаёт вопрос как же их записывать. Проблема, как вы понимаете разрешима, и математики разработали несколько принципов для записи таких чисел. Правда, каждый математик, кто задавался этой проблемой придумывал свой способ записи, что привело к существованию нескольких, не связанных друг с другом, способов для записи чисел — это нотации Кнута, Конвея, Стейнхауза и др.

Рассмотрим нотацию Хьюго Стенхауза (H. Steinhaus. Mathematical Snapshots, 3rd edn. 1983), которая довольно проста. Стейн хауз предложил записывать большие числа внутри геометрических фигур — треугольника, квадрата и круга:

Математик Лео Мозер доработал нотацию Стенхауза, которая была ограничена тем, что если требовалаось записывать числа много больше мегистона, возникали трудности и неудобства, так как приходилось рисовать множество кругов один внутри другого. Мозер предложил после квадратов рисовать не круги, а пятиугольники, затем шестиугольники и так далее. Также он предложил формальную запись для этих многоугольников, чтобы можно было записывать числа, не рисуя сложных рисунков. Нотация Мозера выглядит так:

Миллиард триллиард что дальше. Смотреть фото Миллиард триллиард что дальше. Смотреть картинку Миллиард триллиард что дальше. Картинка про Миллиард триллиард что дальше. Фото Миллиард триллиард что дальше

Но и мозер не самое большое число. Самым большим числом, когда-либо применявшимся в математическом доказательстве, является предельная величина, известная как число Грэма (Graham’s number), впервые использованная в 1977 года в доказательстве одной оценки в теории Рамсея. Оно связано с бихроматическими гиперкубами и не может быть выражено без особой 64-уровневой системы специальных математических символов, введённых Кнутом в 1976 году.

К сожалению, число записанное в нотации Кнута нельзя перевести в запись по системе Мозера. Поэтому придётся объяснить и эту систему. В принципе в ней тоже нет ничего сложного. Дональд Кнут (да, да, это тот самый Кнут, который написал «Искусство программирования» и создал редактор TeX) придумал понятие сверхстепень, которое предложил записывать стрелками, направленными вверх:

В общем виде это выглядит так:

Думаю, что всё понятно, поэтому вернёмся к числу Грэма. Грэм предложил, так называемые G-числа:

Число G 63 стало называться числом Грэма (обозначается оно часто просто как G). Это число является самым большим известным в мире числом и занесёно даже в «Книгу рекордов Гинесса». А, вот тут лежит доказательство, что число Грэма больше числа Мозера.

Так есть числа больше, чем число Грэма? Есть, конечно, для начала есть число Грэма + 1. Что касается значащего числа… хорошо, есть некоторые дьявольски сложные области математики (в частности, области, известной как комбинаторика) и информатики, в которых встречаются числа даже большие, чем число Грэма. Но мы почти достигли предела того, что можно разумно и понятно объяснить.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *