Мода что это в математике

Мода (математика)

Мода — значение во множестве наблюдений, которое встречается наиболее часто. Иногда в совокупности встречается более чем одна мода (например: 2, 6, 6, 6, 8, 9, 9, 9, 10; мода = 6 и 9). В этом случае можно сказать, что совокупность мультимодальна. Из структурных средних величин только мода обладает таким уникальным свойством. Как правило мультимодальность указывает на то, что набор данных не подчиняется нормальному распределению.

Мода, как средняя величина, употребляется чаще для данных, имеющих нечисловую природу. Среди перечисленных цветов автомобилей — белый, черный, синий металлик, белый, синий металлик, белый — мода будет равна белому цвету. При экспертной оценке с её помощью определяют наиболее популярные типы продукта, что учитывается при прогнозе продаж или планировании их производства.

См.также

Смотреть что такое «Мода (математика)» в других словарях:

МАТЕМАТИКА — Математику обычно определяют, перечисляя названия некоторых из ее традиционных разделов. Прежде всего, это арифметика, которая занимается изучением чисел, отношений между ними и правил действий над числами. Факты арифметики допускают различные… … Энциклопедия Кольера

Портрет итальянского Ренессанса — Сандро Боттичелли. «Портрет юноши с медалью Козимо Медичи». 1470 1477. Уффици, Флоренция Портрет итальянского … Википедия

Среднее арифметическое — У этого термина существуют и другие значения, см. среднее значение. В математике и статистике среднее арифметическое одна из наиболее распространённых мер центральной тенденции, представляющая собой сумму всех наблюденных значений деленную на их… … Википедия

Друга Ріка — (рус. Вторая Река) украинская поп рок группа созданная в начале 1996 года в городе Житомире, Украина Друга Ріка Жанр Поп рок Годы с … Википедия

Миланский технический университет — Оригинальное название итал. Politecnico di Milano Прежние названия итал. … Википедия

Успенский, Яков Викторович — Яков Викторович Успенский Дата рождения: 29 апреля (11 мая) 1883(1883 05 11) Место рождения: Урга, Внешняя Монголия, Империя Цин Дата смерти: 27 января … Википедия

Флоренция* — (итал. Firenze, прежде Fiorenza, лат. Florentia цветущий город ) главный город провинции Ф., до 1859 г. главный город Тосканского великого герцогства, с 1865 до 1871 г. столица Итальянского королевства, под 43°46 с. ш. и 11°17 в. д. от Гринвича,… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Флоренция, город — (итал. Firenze, прежде Fiorenza, лат. Florentia цветущий город ) гл. гор. провинции Ф., до 1859 г. гл. гор. Тосканского великого герцогства, с 1865 до 1871 г. столица Итальянского королевства, под 43° 46 с. ш. и 11° 17 в. д. от Грин., на высоте,… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Сейлор Мун — Главная героиня аниме «Сейлор Мун», Усаги Цукино Sailor Moon (англ.) яп. 美少女戦士セーラームーン … Википедия

Египет — I (греч. Αϊγυπτος; лат. Aegyptus; фр. Egypte; англ. Egypt; нем. Aegypten; итал. Egytto; арабск. Masz). Положение, границы. Страна Е. (в узком, историческом смысле слова) лежит между 24°5 и 31°35 северной широты и 28°50 и 34°41 восточной долготы… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Источник

8.4. МОДА и МЕДИАНА (структурные средние)

Мода и медиана наиболее часто используемые в экономической практике структурные средние.

Мода – это величина признака (варианта), который наиболее часто встречается в данной совокупности, т.e. это варианта, имеющая наибольшую частоту.

В дискретном ряду мода определяется в соответствии с определением, т.е. это одна из вариант признака, которая в ряду распределения имеет наибольшую частоту.

Для интервального ряда моду находим по формуле (8.16), сначала по наибольшей частоте определив модальный интервал:

Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике

где х о – начальная (нижняя) граница модального интервала;

h – величина интервала;

fМо – частота модального интервала;

fМо-1 – частота интервала, предшествующая модальному;

fМо+1 – частота интервала следующая за модальным.

Медианой называется такое значение признака, которое приходится на середину ранжированного ряда, т.е. в ранжированном ряду распределения одна половина ряда имеет значение признака больше медианы, другая – меньше медианы.

В дискретном ряду медиана находится непосредственно по накопленной частоте, соответствующей номеру медианы.

В случае интервального вариационного ряда медиану определяют по формуле:

Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике(8.17 – формула Медианы)

где хо – нижняя граница медианного интервала;

NМе – порядковый номер медианы (Σf/2);

S Me-1 – накопленная частота до медианного интервала;

fМе – частота медианного интервала.

Пример вычисления Моды.

Рассчитаем моду и медиану по данным табл. 8.4.

Таблица 8.4 – Распределение семей города N по размеру среднедушевого дохода в январе 2018 г. руб.(цифры условные)

Группы семей по размеру дохода, руб.Число

До 50006006006
5000-60007001300

(600+700)

13
6000-70001700 (fМо-1)3000 (S Me-1 )

о)

2500

(fМе)

5500 (S Me)55
8000-90002200 (fМо+1)

770077
9000-100001500920092
Свыше 1000080010000100
Итого10000

Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике

Пример вычисления Медианы интервального вариационного ряда. Рассчитаем медиану по формуле (8.17):

1) сначала находим порядковый номер медианы: NМе = Σfi/2= 5000.

2) по накопленным частотам в соответствии с номером медианы определяем, что 5000 находится в интервале (7000 – 8000), далее значение медианы определим по формуле (8.17):

Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике

Вывод: по моде – наиболее часто встречается среднедушевой доход в размере 7730 руб., по медиане – что половина семей города имеет среднедушевой доход ниже 7800 руб., остальные семьи – более 7800 руб.

Соотношение моды, медианы и средней арифметической указывает на характер распределения признака в совокупности, позволяет оценить его асимметрию.

Если М о о следует сделать вы­вод о левосторонней асимметрии ряда.

Источник

4. Мода. Медиана. Генеральная и выборочная средняя

Мода на экране, медиана в треугольнике, а средние – это температура по больнице и в палате. Продолжаем наш практический курс занимательной статистики (Занятие 1) изучением центральных характеристик статистической совокупности, названия которых вы видите в заголовке. И начнём мы с его конца, поскольку о средних величинах речь зашла практически с первых же абзацев темы. Для подготовленных читателей оглавление:

ну а «чайникам» лучше ознакомиться с материалом по порядку:

Итак, пусть исследуется некоторая генеральная совокупность объёма Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике, а именно её числовая характеристика Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике, не важно, дискретная или непрерывная (Занятия 2, 3).

Генеральной средней называется среднее арифметическое всех значений этой совокупности:
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике

Если среди чисел Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математикеесть одинаковые (что характерно для дискретного ряда), то формулу можно записать в более компактном виде:
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике, где
варианта Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математикеповторяется Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математикераз;
варианта Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математикеМода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математикераз;
варианта Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математикеМода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математикераз;

варианта Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математикеМода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математикераз.

Живой пример вычисления генеральной средней встретился в Примере 2, но чтобы не занудничать, я даже не буду напоминать его содержание.

Далее. Как мы помним, обработка всей генеральной совокупности часто затруднена либо невозможна, и поэтому из неё организуют представительную выборку объема Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике, и на основании исследования этой выборки делают вывод обо всей совокупности.

Выборочной средней называется среднее арифметическое всех значений выборки:
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике
и при наличии одинаковых вариант формула запишется компактнее:
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике– как сумма произведений вариант Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математикена соответствующие частоты Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике, делённая на объём совокупности.

Выборочная средняя Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математикепозволяет достаточно точно оценить истинное значение Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике, чего вполне достаточно для многих исследований. При этом, чем больше выборка, тем точнее будет эта оценка.

Практику начнём, а точнее продолжим, с дискретного вариационного ряда и знакомого условия:

По результатам выборочного исследования Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математикерабочих цеха были установлены их квалификационные разряды: 4, 5, 6, 4, 4, 2, 3, 5, 4, 4, 5, 2, 3, 3, 4, 5, 5, 2, 3, 6, 5, 4, 6, 4, 3.

Это числа из Примера 4 (см. по ссылке выше), но теперь нам требуется: вычислить выборочную среднюю, и, не отходя от станка, найти моду и медиану.

Как решать задачу? Если нам даны первичные данные (исходные необработанные значения), то их можно тупо просуммировать и разделить результат на объём выборки:
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике– среднестатистический квалификационный разряд рабочих цеха.

Но во многих задачах требуется составить вариационный ряд (см. Пример 4):
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике
– или же этот ряд предложен изначально (что бывает чаще). И тогда, мы, конечно, используем «цивилизованную» формулу:
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике

Далее. Мода и медиана. Эти понятия тоже вводятся как для генеральной, так и для выборочной совокупности, и определения я сформулирую в общем виде.

Мода. Мода Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математикедискретного вариационного ряда – это варианта с максимальной частотой. В данном случае Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике. Моду легко отыскать по таблице, и ещё легче на полигоне частот – это абсцисса самой высокой точки:
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике
Иногда таковых значений несколько (с одинаковой максимальной частотой), и тогда модой считают каждое из них.

Если все или почти все варианты различны (что характерно для интервального ряда), то модальное значение определяется несколько другим способом, о котором во 2-й части урока.

Медиана. Медиана Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математикевариационного ряда* – это значение, которая делит его на две равные части (по количеству вариант).

* не важно, дискретного или интервального, генеральной совокупности или выборочной.

Медиану можно отыскать несколькими способами.

Если даны первичные данные, то сортируем их по возрастанию либо убыванию (см. Задание 1) и находим середину ранжированного ряда: Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике. Почему именно 13-е число? Потому что перед ним находится 12 чисел и после него тоже 12 чисел, таким образом, значение Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математикеразделило ряд на две равные части, а значит, является медианой. Этот номер можно найти аналитически:

– если совокупность содержит нечётное количество чисел (наш случай), то делим её объём пополам: Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математикеи округляем полученное значение в бОльшую сторону: 13 – получая тем самым срединный номер.

– если совокупность содержит чётное количество чисел, например, 20, то делаем то же самое: Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике, и медианное значение здесь рассчитывается как среднее арифметическое 10-го и следующего числа: Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике.

Напоминаю, что изложенная инструкция работает для упорядоченного (по возрастанию либо убыванию) ряда. Но есть и более быстрый путь, где ничего не нужно сортировать. Это использование стандартной функции Экселя:

– забиваем в любую свободную ячейку =МЕДИАНА(, выделяем мышью все числа, закрываем скобку ) и жмём Enter. Попробуйте самостоятельно. Этот способ удобен, когда вам дано много значений.

Следует отметить, что в Экселе существуют и отдельные функции для вычисления средней (=СРЗНАЧ), моды (=МОДА) и ещё много чего, но я против использования этих функций в учебном курсе, за исключением случаев, где это действительно целесообразно. …Почему против? Потому что они не помогают понять суть показателей и, более того, отупляют. Так, среднюю гораздо вразумительнее рассчитывать следующим образом:

=СУММ(выделяем мышью диапазон) / объем совокупности. Вычисления рекомендую опробовать лично (ссылка выше).

Ситуация вторая. Когда составлен либо изначально дан готовый дискретный ряд. Тут можно поступить «по любительски» – начать отсчитывать примерно равное количество чисел по краям ряда:
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике
после чего мысленно либо на черновике их отбрасывать, в данном случае отбросим по 8 штук сверху и снизу:
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике
откуда становится ясно, что медианное значение: Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике

Второй способ более академичен, находим относительные накопленные частоты:
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике
и то значение «икса», у которого Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике«переваливает» за отметку 0,5 (50% упорядоченной совокупности). Для 3-го разряда успело накопиться Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике(32% совокупности), а вот для 4-го – уже Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике(64%). Таким образом, отметка в 50% пройдена именно здесь, и, стало быть, Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике.

Запишем красивый ответ: Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике

Полученные значения близки друг к другу, и это говорит о симметрии вариационного ряда относительно центра, что хорошо видно по полигону частот (см. чертёж выше). И с высокой вероятностью можно утверждать, что примерно так же распределена и вся генеральная совокупность (все рабочие цеха).

И тут возникает следующий закономерный вопрос: а зачем вообще нужна мода с медианой? – ведь есть средняя.

А дело в том, что в ряде случаев среднее значение неудовлетворительно характеризует центральную тенденцию статистической совокупности:

Известны результаты продаж пиджаков в универмаге города:
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике
где, Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике– количество пуговиц на пиджаке, Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике– число продаж, буква «эф» – это тоже достаточно популярная буква для обозначения частот, и она не должна вас смущать при встрече.

…ну, а если вам не нравятся пиджаки, то представьте какие-нибудь шляпки с цветочками 🙂

Также обратим внимание, что в условии задачи ничего не сказано о том, генеральная ли это совокупность или выборочная, и в подобной ситуации я не рекомендую ничего додумыватьсреднюю просто обозначаем через Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике, без подстрочного индекса.

Вычислить среднюю – в экселевском файле уже забиты исходные данные и приведена краткая инструкция. Если под пальцами нет Экселя, то считаем на калькуляторе. Не ленимся! – заданий я предлагаю немного (у вас своих хватает :)), но прорешать их очень важно! Краткое решение для сверки в конце урока.

…какие мысли на счёт полученного значения Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике? С такой статистикой магазин разорится.

И, конечно, важнейший показатель здесь мода: Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике. Потому что такая мода 🙂 Более того, в прикладных исследованиях рассматривают несколько модальных значений (вроде даже в Экселе функция есть), в частности, ещё одной модой можно считать варианту Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике. Но это уже попсовая статистика, которую я не буду развивать в этом курсе.

Ещё хуже (в содержательном плане) ситуация с медианой – продолжаем решать задачу в Экселе (ссылка выше) либо в тетради! Особо зоркие читатели медиану углядят и устно, и в конце урока я привёл способ, который просто бросился мне в глаза.

Теперь надеваем пиджаки / шляпы и возвращаемся на фабрику, где бухгалтер Петрова вычислила генеральную среднюю заработную плату рабочих: Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математикеденежных единиц. Здесь мы плавно перешли к интервальному ряду, который целесообразно составлять для «денежных» показателей.

Что будет, если к совокупности добавить руководящий персонал и директора Петрова? Средняя зарплата немного увеличится: Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике, и это уже будет несколько искажённая картина.

А вот если сюда добавить олигарха Петровского, то полученная средняя Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математикевообще вызовет широкое возмущение общественности.

Поэтому, если в статистической совокупности есть «аномальные» отклонения в ту или иную сторону, то в качестве оценки центрального значения как нельзя лучше подходит медиана, которая в нашем условном примере будет равна, скажем, Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике. Ниже этой планки зарабатывает ровно половина совокупности и выше – другая половина, включая Петрова и Петровского. …Главное только, чтобы они наняли правильного статистика 🙂

Как вычислить моду, медиану и среднюю интервального ряда?

Начнём опять с ситуации, когда нам даны первичные статические данные:

По результатам выборочного исследования цен на ботинки в магазинах города получены следующие данные (ден. ед.):
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике
– это в точности числа из Примера 6 статьи об интервальном вариационном ряде.

Но теперь нам нужно найти среднюю, моду и медиану.

Решение: чтобы найти среднюю по первичным данным, нужно просуммировать все варианты и разделить полученный результат на объём совокупности:
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математикеден. ед.

Эти подсчёты, кстати, займут не так много времени и при использовании оффлайн калькулятора. Но если есть Эксель, то, конечно, забиваем в любую свободную ячейку =СУММ(, выделяем мышкой все числа, закрываем скобку ), ставим знак деления /, вводим число 30 и жмём Enter. Готово.

Что касается моды, то её оценка по исходным данным, становится непригодна. Хоть мы и видим среди чисел одинаковые, но среди них запросто может найтись пять так шесть-семь вариант с одинаковой максимальной частотой, например, частотой 2. Кроме того, цены могут быть округлёнными. Поэтому модальное значение рассчитывается по сформированному интервальному ряду (о чём чуть позже).

Чего не скажешь о медиане: забиваем в Эксель =МЕДИАНА(, выделяем мышью все числа, закрываем скобку ) и жмём Enter: Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике. Причём, здесь даже ничего не нужно сортировать.

Но в Примере 6 была проведена сортировка по возрастанию (вспоминаем и сортируем – ссылка выше), и это хорошая возможность повторить формальный алгоритм отыскания медианы. Делим объём выборки пополам:

Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике, и поскольку она состоит из чётного количества вариант, то медиана равна среднему арифметическому 15-й и 16-й варианты упорядоченного (!) вариационного ряда:

Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математикеден. ед.

Ситуация вторая. Когда дан готовый интервальный ряд (типичная учебная задача).

Продолжаем анализировать тот же пример с ботинками, где по исходным данным был составлен ИВР. Для вычисления средней потребуются середины Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математикеинтервалов:
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике
– чтобы воспользоваться знакомой формулой дискретного случая:
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике– отличный результат! Расхождение с более точным значением (Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике), вычисленным по первичным данным, составляет всего 0,04.

Здесь мы использовали упомянутый ранее приём – приблизили интервальный ряд дискретным, и это приближение оказалось весьма эффективным. Впрочем, особой выгоды тут нет, т.к. при современном программном обеспечении не составляет труда вычислить точное значение даже по очень большому массиву первичных данных. Но это при условии, что они нам известны 😉

С другими центральными показателями всё занятнее.

Чтобы найти моду, нужно найти модальный интервал (с максимальной частотой) – в данной задаче это интервал Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математикес частотой 11, и воспользоваться следующей страшненькой формулой:
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике, где:

Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике– нижняя граница модального интервала;
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике– длина модального интервала;
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике– частота модального интервала;
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике– частота предыдущего интервала;
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике– частота следующего интервала.

Таким образом:
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математикеден. ед. – как видите, «модная» цена на ботинки заметно отличается от средней арифметической Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике.

Не вдаваясь в геометрию формулы, просто приведу гистограмму относительных частот и отмечу Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике:
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике
откуда хорошо видно, что мода смещена относительно центра модального интервала в сторону левого интервала с бОльшей частотой. Логично.

Справочно разберу редкие случаи:

– если модальный интервал крайний, то Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математикелибо Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике;

– если обнаружатся 2 модальных интервала, которые находятся рядом, например, Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математикеи Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике, то рассматриваем модальный интервал Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике, при этом близлежащие интервалы (слева и справа) по возможности тоже укрупняем в 2 раза.

– если между модальными интервалами есть расстояние, то применяем формулу к каждому интервалу, получая тем самым 2 или бОльшее количество мод.

Вот такой вот депеш мод 🙂

И медиана. Если дан готовый интервальный ряд, то медиана рассчитывается чуть по менее страшной формуле, но сначала нудно (описка по Фрейду:)) найти медианный интервал – это интервал, содержащий варианту (либо 2 варианты), которая делит вариационный ряд на две равные части.

Выше я рассказал, как определить медиану, ориентируясь на относительные накопленные частоты Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике, здесь же сподручнее рассчитать «обычные» накопленные частоты Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике. Вычислительный алгоритм точно такой же – первое значение сносим слева (красная стрелка), и каждое следующее получается как сумма предыдущего с текущей частотой из левого столбца (зелёные обозначения в качестве примера):
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике
Всем понятен смысл чисел в правом столбце? – это количество вариант, которые успели «накопиться» на всех «пройденных» интервалах, включая текущий.

Поскольку у нас чётное количество вариант (30 штук), то медианным будет тот интервал, который содержит 30/2 = 15-ю и 16-ю варианту. И ориентируясь по накопленным частотам, легко прийти к выводу, что эти варианты содержатся в интервале Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике.

Формула медианы:
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике, где:
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике– объём статистической совокупности;
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике– нижняя граница медианного интервала;
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике– длина медианного интервала;
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математикечастота медианного интервала;
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математикенакопленная частота предыдущего интервала.

Таким образом:
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математикеден. ед. – заметим, что медианное значение, наоборот, оказалось смещено правее, т.к. по правую руку находится значительное количество вариант:
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике
И справочно особые случаи:

– Если медианным является крайний левый интервал, то Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике;

– Если вариационный ряд содержит чётное количество вариант и две средние варианты попали в разные интервалы, то объединяем эти интервалы, и по возможности удваиваем предыдущий интервал

Ответ: Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математикеден. ед.

Здесь центральные показатели оказались заметно отличны друг от друга, и это говорит об асимметрии распределения, которая хорошо видна по гистограмме.

И задача для тренировки:

Для изучения затрат времени на изготовление одной детали рабочими завода проведена выборка, в результате которой получено следующее статистическое распределение:
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике
…да, тематичная у меня получилась статья 🙂

Найти среднюю, моду и медиану.

Это, кстати, уже каноничная «интервальная» задача, в которой исследуется непрерывная величина – время.

Решаем эту задачу в Экселе – все числа и инструкции уже там. Если нет Экселя, считаем на калькуляторе, что в данном случае может оказаться даже удобнее. Образец решения, как обычно, в конце урока.

Несмотря на разнообразия рассмотренных показателей, их всё равно бывает не достаточно. Существуют крайне неоднородные совокупности, у которых варианты «кучкуются» во многих местах, и по этой причине средняя, мода и медиана неудовлетворительно характеризуют центральную тенденцию.

В таких случаях вариационный ряд дробят с помощью квартилей, децилей, а в упоротых специализированных исследованиях – и с помощью перцентилей.

Квартили упорядоченного вариационного ряда – это варианты Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике, которые делят его на 4 равные (по количеству вариант) части. Откуда автоматически следует, что 2-я квартиль – есть в точности медиана: Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике.

В тяжёлых случаях проводится разбиение на 10 частей – децилями Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике– это варианты, который делят упорядоченный вариационный ряд на 10 равных (по количеству вариант) частей.

И в очень тяжелых случаях в ход пускается 99 перцентилей Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике.

И после разбиения вариационного ряда каждый участок исследуется по отдельности – рассчитываются локальные средние показатели, локальные показатели вариации и т.д.

В учебном курсе квартили, децили, перцентили встречаются редко, и посему я оставляю этот материал (их нахождение) для самостоятельного изучения.

Ну а сейчас мы перейдём к рассмотрению другой группы статистических показателей – как раз к показателям вариации.

Пример 9. Решение: заполним расчётную таблицу:
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике
Вычислим среднюю:
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике– две с половиной пуговицы, Карл!
По правому столбцу определяем «иксовое» значение, которое делит совокупность на 2 равные части: Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике(именно здесь накопленная частота «перевалила» за 0,5).

Кроме того, медиану легко усмотреть и устно – поскольку половина совокупности равна Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике, а сумма первых двух частот Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике, то совершенно понятно, что 250-й и 251-й пиджак – двухпуговичные.

Пример 11. Решение: поскольку длина внутренних интервалов равна Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике, то длины крайних интервалов полагаем такими же (см. конец статьи Интервальный вариационный ряд). Заполним расчётную таблицу:
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике

Вычислим выборочную среднюю:
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математикемин.

Моду вычислим по формуле Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике, в данном случае:
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике– нижняя граница модального интервала;
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике– длина модального интервала;
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике– частота модального интервала;
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике– частота предшествующего интервала;
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике– частота следующего интервала.
Таким образом:
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математикемин.

Анализируя накопленные частоты, приходим к выводу, что медианным является интервал Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике(именно он содержит 50-ю и 51-ю варианты, которые делят ряд пополам).
Медиану вычислим по формуле Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике, в данном случае:
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике– нижняя граница медианного интервала;
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике– длина этого интервала;
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике– объём статистической совокупности;
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике– частота медианного интервала;
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике– накопленная частота предыдущего интервала.
Таким образом:
Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математикемин.

Ответ: среднее время изготовления детали характеризуется следующими центральными характеристиками: Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике

Автор: Емелин Александр

(Переход на главную страницу)

Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике Zaochnik.com – профессиональная помощь студентам

cкидкa 15% на первый зaкaз, прoмoкoд: 5530-hihi5

Мода что это в математике. Смотреть фото Мода что это в математике. Смотреть картинку Мода что это в математике. Картинка про Мода что это в математике. Фото Мода что это в математике Tutoronline.ru – онлайн репетиторы по математике и другим предметам

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *