Момент сопротивления изгибу в чем измеряется
Момент сопротивления
Нормальные напряжения зависят только от изгибающего момента, а касательные только от поперечной силы. Это позволяет упростить расчет нормальных напряжений для частного случая чистого изгиба, когда Q = 0.
Волокна, не изменяющие своей длины, образуют нейтральный слой. Линии пересечения нейтрального слоя с плоскостью сечения балки называется нейтральная ось.
Расчет балок на прочность проводится по максимальным нормальным напряжениям, возникающим в тех поперечных сечениях, где наибольший изгибающий момент.
Для балок из хрупких материалов составляют два условия прочности:
Распределение нормальных нагрузок по сечению таково, что часть материала, находящегося около нейтральной оси, почти не нагружена. Наиболее целесообразно использовать двухтавровое поперечное сечение, для которого с наименьшими затратами материала можно получить наибольший момент сопротивления.
37 вопрос- Расчет на прочность при изгибе
При изгибе балки происходит искривление ее оси в плоскости действия внешней силы.
Jz — экваториальный момент инерции сечения балки относительно оси z.
Величина EJzназывается жесткостью бруса при изгибе.
Исключая кривизну из предыдущей формулы получим выражение для напряжения:
Максимальное напряжение при изгибе возникает в точках, наиболее удаленных от нейтральной линии
Отношение Jz/ymax называется моментом сопротивления сечения при изгибе и обозначается через Wх :
Эта формула является основной при расчете на прочность бруса при изгибе.
Для бруса прямоугольного сечения Jz = bh 3 /12
Для бруса круглого сечения Jz = πD 4 /64
38 вопрос- Поперечный изгиб
Поперечный изгиб – это такой вид нагружения, при котором в поперечных сечениях бруса возникают не только изгибающие моменты Мх, но и поперечные силы Qу. Эта сила представляет собой равнодействующую элементарных распределенных сил, лежащих в плоскости сечения. В этом случае в поперечных сечениях возникают не только нормальные, но и касательные напряжения.
Возникновение касательных напряжений τ сопровождается появлением угловых деформаций. Поэтому, кроме основных смещений, свойственных чистому изгибу, каждая элементарная площадка сечения dF получает еще некоторые дополнительные угловые смещения, обусловленные сдвигом (рис. 10.16).
Рис. 10.16 Искривление поперечных сечений
При поперечном изгибе моменты, возникающие в левом и правом сечениях элемента, не одинаковы и отличаются на dM. Продольным горизонтальным сечением, проведенным на расстоянии у от нейтрального слоя, разделим элемент на две части и рассмотрим условия равновесия верхней части. Равнодействующая нормальных сил в левом сечении в пределах заштрихованной площади (отсеченной части) равна
Полагая, что справедливо распределение в виде:
, получим
,
где через у обозначена текущая ордината площадки dF. Разность нормальных сил в правом и левом сечении должна уравновешиваться касательными силами, возникающими в продольном сечении элемента (рис. 10.19)
39 вопрос –Линейные и угловые перемещения при изгибе
Под действием поперечных нагрузок продольная ось искривляется (рис. 33.6). Если материал подчиняется закону Гука, после снятия нагрузок брус выпрямляется, поэтому изогнутую ось бруса называют упругой линией. По форме упругой линии балки можно судить о перемещениях при изгибе.
При прямом поперечном изгибе бруса его ось, искривляясь, остается в силовой плоскости. В результате деформации бруса каждое из его поперечных сечений получает вертикальное и горизонтальное перемещение, а само сечение поворачивается на некоторый угол Θ.
Деформации должны иметь упругий характер, они достаточно малы. В этом случае горизонтальные перемещения сечений ничтожно малы и не учитываются. Рассматривают вертикальные перемещения центра тяжести сечения, называемые прогибами (у). Максимальные прогибы обозначают f = утаx. Для обеспечения нормальной работы устанавливаемого на балках оборудования проводят расчет на жесткость.
Условие жесткости выражается неравенством
Существует несколько методов определения перемещений сечений при изгибе. Один из них основан на дифференцировании уравнения упругой линии, более рациональный способ — использование интегралов Мора. Метод Мора — универсальный способ определения линейных и угловых перемещений в любых системах.
Для облегчения расчетов на жесткость можно использовать формулы прогибов и углов поворота сечений балок для простейших случаев нагружений. Наиболее распространенные случаи нагружения и расчетные формулы приведены в таблице.
При решении используем принцип независимости действия сил. Заданный случай нагружения делится на составляющие, для которых прогибы рассчитываются по известным табличным формулам, результаты расчетов суммируются.
Ограничение угла поворота вводится для обеспечения нормальной работы подшипников скольжения и роликовых подшипников.
В этом случае проверяется дополнительное условие жесткости:
Определение линейных и угловых перемещений необходимо для расчетов на жесткость при изгибе и нахождения так называемых лишних неизвестных в статически неопределимых балках.
40 вопрос- Напряженное состояние в точке
Напряженное состояние в точке характеризуется нормальными и касательными напряжениями, возникающими на всех площадках (сечениях), проходящих через данную точку. Обычно достаточно определить напряжения на трех взаимно перпендикулярных площадках, проходящих через рассматриваемую точку. Точку принято изображать в виде маленького элемента в форме параллелепипеда (рис. 34.1).
Положения теории напряженного состояния:
1. Напряженное состояние в данной точке полностью определено, если известны напряжения по любым трем взаимно перпендикулярным площадкам.
2. Среди множества площадок, которые можно провести через данную точку, есть три такие взаимно перпендикулярные площадки, на которых отсутствуют касательные напряжения, эти площадки называются главными, а нормальные напряжения, возникающие на них, называются главными напряжениями: σ1; σ2; σ3 (рис. 34.1).
Одно из этих напряжений — максимально, одно — минимально. Максимальное обозначают σ1, минимальное — σ3.
Классификация видов напряженного состояния производится по главным напряжениям:
— если все три главных напряжения не равны нулю, то напряженное состояние называют объемным (трехосным) (рис. 34.1а);
— если одно из главных напряжений равно нулю, напряженное состояние называют плоским (двухосным) (рис. 34.15);
— если два из главных напряжений (σ2 = 0) противоположны по знаку, напряженное состояние называют упрощенным плоским состоянием;
— если лишь одно из главных напряжений не равно нулю, напряженное состояние линейное (рис. 34.1 в).
41 вопрос- Сложное деформированное состояние
Сложное деформированное состояние возникает в тех случаях, когда элемент конструкции или машина подвергается одновременно нескольким простейшим деформациям.
Выше рассматривались заклепочные и шпоночные соединения, в которых одновременно возникает срез и смятие и соответственно действуют нормальные и касательные напряжения. В затянутых болтах также имеет место сложное деформирование, в них обнаруживается совместное действие растяжения от затяжки силой F и кручения от момента трения Мк. В связи с этим в болтах возникают нормальные напряжения от растяжения и касательные напряжения от кручения
где — площадь сечения болта; — полярный момент сопротивления.
Нормальные напряжения распределены по сечению равномерно, а касательные достигают максимальных значений у контура болта. Очевидно, периферийные точки болта находятся в наиболее опасном состоянии, особенно в связи с наличием концентрации напряжений в нарезке.
Другим примером сложного деформирования являются валы, которые работают на изгиб и кручение. При этом в поперечном сечении вала возникают нормальные и касательные напряжения. Возникающие от изгиба нормальные напряжения достигают максимального значения в волокнах, наиболее удаленных от нейтральной оси:
где Ми — изгибающий момент; — осевой момент сопротивления сечения.
Максимальные касательные напряжения при кручении возникают в точках контура поперечного сечения
где Wp = 0,2d^3 — полярный момент сопротивления.
Следовательно, в наиболее напряженных точках вала при совместном действии изгиба,и кручения возникают нормальные и касательные напряжения. Встает вопрос, какое же из этих напряжений или какая их комбинация определяют прочность вала. Ответ на этот вопрос дают так называемые теории (или гипотезы) прочности.
42 вопрос- Устойчивость сжатых стержней
Деформированное состояние центрально-сжатого стержня (рис. 8.1, а) может быть устойчивым или неустойчивым. Если вывести стержень из первоначального состояния малой дополнительной горизонтальной силойР, то он окажется искривлённым (рис. 8.1, б). После удаления силы Р стержень либо возвращается в первоначальное прямолинейное состояние (рис. 8.1, в), либо остаётся искривлённым (рис. 8.1, г). Первый случай соответствует устойчивому деформированному состоянию стержня, второй случай – неустойчивому деформированному состоянию.
Рис. 8.1. Состояния сжатого стержня: а – исходное; б – стержень с дополнительной поперечной нагрузкой Р; в – прямолинейный стержень после удаления силы Р; г – криволинейный стержень после удаления силы Р
Между устойчивым и неустойчивым состояниями теоретически существует промежуточное, называемоекритическим состоянием, при котором стержень после удаления силы Р может остаться в равновесии как в прямолинейном состоянии, так и в криволинейном. При заданных размерах стержня вид его деформированного состояния зависит от величины сжимающей силы.
Наибольшая величина сжимающей силы, при которой деформированное состояние стержня ещё устойчивое, называется критической силой, обозначаемой FК (рис. 8.1)
Превышение величины критической силы приводит к потере устойчивости, при которой малые поперечные нагрузки приводят к большим изгибным перемещениям стержня и возможному его разрушению.
Отношение критической силы к площади поперечного сечения стержня называют критическим напряжением .
В том случае, когда критические напряжения не превышают предела пропорциональности материала , потеря устойчивости начинается при упругом деформировании стержня и критическую силу вычисляют по формуле Эйлера
,
где – изгибная жёсткость; – геометрическая длина стержня; – коэффициент приведения длины стержня, зависящий от способов закрепления концов стержня (табл. 8.1). Произведение называется приведённой длиной стержня.
Для сжатых стержней вводится безразмерная характеристика, называемая гибкостью , где – радиус инерции поперечного сечения.
Формула Эйлера справедлива при условии .
43 вопрос- Расчет на устойчивость сжатых стержней.Критическая сила.
Для сжатых стержней должно выполняться условие устойчивости , в котором допускаемые напряжения на устойчивость получаются делением критических напряжений на коэффициент запаса устойчивости . Принято выражать величину через величину основных допускаемых напряжений при расчетах на прочность , где множитель называется коэффициентом продольного изгиба. Этот коэффициент зависит от гибкости и материала стержня, его величина меньше единицы и находится из справочных таблиц.
Для практических расчётов условие устойчивости записывают в виде
.
Наибольшая величина сжимающей силы, при которой деформированное состояние стержня ещё устойчивое, называется критической силой, обозначаемой FК (рис. 8.1)
Превышение величины критической силы приводит к потере устойчивости, при которой малые поперечные нагрузки приводят к большим изгибным перемещениям стержня и возможному его разрушению.
Отношение критической силы к площади поперечного сечения стержня называют критическим напряжением .
44 вопрос – Критическое напряжение при расчете на устойчивость сжатых стержней
Превышение величины критической силы приводит к потере устойчивости, при которой малые поперечные нагрузки приводят к большим изгибным перемещениям стержня и возможному его разрушению.
Отношение критической силы к площади поперечного сечения стержня называют критическим напряжением .
В том случае, когда критические напряжения не превышают предела пропорциональности материала , потеря устойчивости начинается при упругом деформировании стержня и критическую силу вычисляют по формуле Эйлера
,
где – изгибная жёсткость; – геометрическая длина стержня; – коэффициент приведения длины стержня, зависящий от способов закрепления концов стержня (табл. 8.1). Произведение называется приведённой длиной стержня.
45 вопрос- Сопротивление усталости.Понятие о цикле.
Для оценкисопротивления усталости материалов, предназначенных для производства энергетических установок, химического и другого оборудования, нами [80] разработана методика и создано оборудование для испытания материалов на усталость при периодическом смачивании, нагретых до повышенных температур образцов, брызгами коррозионной среды. [7]
Совокупность термодинамических процессов, в результате которых рабочее тело возвращается в исходное состояние, называется термодинамическим циклом, или круговым процессом.
46 вопрос- Факторы влияющие на сопротивление усталости
Сопротивление усталости материалов в общем случае зависит от трех групп факторов, связанных, во-первых, с характером напряженного состояния детали или образца, во-вторых, со свойствами материала, и, в-третьих, с воздействием окружающей среды. Причины остановки роста усталостной трещины целесообразно рассматривать с учетом именно этих групп факторов.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Определение момента сопротивления
Когда мы определяли момент сопротивления для поперечного сечения балки из однородного материала, обладающего изотропными свойствами, то вывели следующие расчетные формулы:
W ≥ М / R (149:4.8)
Wz = b · h 2 / 6 (149:4.6)
Однако строительные конструкции далеко не всегда имеют прямоугольную форму, простую геометрическую форму или форму прокатного профиля, моменты сопротивления для которых давно рассчитаны другими. Кроме того материал, из которого сделана конструкция, может обладать разными расчетными сопротивлениями при сжатии и при растяжении, например, бетон или железобетон, и далеко не всегда материал является изотропным при действии нормальных и касательных напряжений, например, древесина. Поэтому при решении различных задач по расчету строительных конструкций иногда приходится определять момент инерции для поперечного сечения самому. Рассмотрим наиболее распространенные случаи, когда это требуется:
1. Момент сопротивления для прямоугольного сечения анизотропного материала.
Для определения параметров прямоугольного сечения анизотропных материалов, таких как бетон, железобетон, других композитных материалов с различными расчетными сопротивлениями на растяжение и сжатие, момент сопротивления следует определять отдельно для сжимаемой и для растягиваемой зоны или производить расчеты для приведенного сечения. Пока рассмотрим, что получается, при определении параметров отдельно для сжимаемой и для растягиваемой зоны. Из общего уравнения (149:4.8) мы можем простейшим математическим действием, каковым является умножение, вывести следующее уравнение:
M = WR (1.1)
Это общее уравнение, безусловно справедливое для прямоугольного сечения изотропного материала, его еще можно записать следующим образом:
M = (Wс + Wр) R / 2 (1.2)
при Wс = Wр = Wz и при Rс = Rр уравнения (1.2) или (1.3) сводятся к (1.1). А на 2 мы делим уравнения потому, что моменты сопротивления определяются для всего сечения, а не для сжимаемой или растягиваемой части. Впрочем, этой двойке можно дать и другое толкование.
Рисунок 1. Эпюра нормальных напряжений, возникающих в поперечном сечении при действии изгибающего момента.
С точки зрения строительной механики для упрощения расчетов вполне допустимо заменить распределенную нагрузку, каковой в данном случае является эпюра нормальных напряжений, сосредоточенными силами, равнодействующими для каждой части эпюры:
Рисунок 2. Замена распределенной нагрузки сосредоточенной нагрузкой.
В данном случае сосредоточенные силы можно рассматривать как расчетные сопротивления R, приложенные ко всей площади сечения сжатой или растянутой зоны с плечом h/3, а так как равнодействующая сила от равномерно изменяющейся нагрузки, в данном случае нормальных напряжений σ, будет равна половине нагрузки, умноженной на длину приложения нагрузки, то мы можем рассматривать значения Rс/2 и Rр/2, чтобы соблюдалось условие σ ≤ R.
Вне зависимости от того, каким является материал, можно допустить, что конструкция из этого материала будет работать нормально, если соблюдается следующее условие:
Если считать, что распределение внутренних нормальных напряжений всегда происходит относительно центра тяжести сечения, так как показано на рисунке 1, то расчет параметров сечения следует производить по наименьшему расчетному сопротивлению. Но если мы допустим, что центр тяжести сечения может смещаться, то для анизотропного материала, например бетона, для которого сопротивление сжатию приблизительно в 10 раз больше сопротивления растяжению, эпюра предельных нормальных напряжений может выглядеть следующим образом:
Рисунок 3. Эпюра нормальных напряжений и приведенные сосредоточенные нагрузки для приведенного сечения.
При этом центр тяжести приведенного сечения сместится и будет находиться на оси z’. Поэтому значения моментов сопротивления будут:
Wс = 2by 2 / 3 (1.5.1)
Примечание: так как мы рассматриваем не просто верхнюю сжатую или нижнюю растянутую часть сечения, а условно сжатое сечение и условно растянутое сечение, то правые части уравнений (1.5.1) и (1.5.2) следует умножить на 2, чтобы учесть и верхнюю и нижнюю часть условного сечения, а затем разделить на 2, чтобы учесть, что напряжения по высоте полусечения изменяются от максимума до 0. Впрочем, на конечном результате это никак не отразится.
Подставляя эти значения в уравнение (1.4), получим:
Решая дальше уравнение (1.7), мы получим значение
В принципе эту формулу можно использовать и для изотропного материала, у которого расчетные сопротивления растяжению и сжатию равны. В этом случае мы получим у = h / (√‾1 +1) = h / 2.
Определить значение у, можно и другим способом, если мы не знаем значение высоты элемента (да и откуда нам его знать, если как правило мы должны определить высоту в результате расчетов), но знаем значение максимального изгибающего момента. Согласно формул (1.4) и (1.5.1)
Теперь, чтобы эти формулы не остались абстрактными измышлениями, применим их на практике:
Пример расчета бетонного элемента прямоугольной формы на действие изгибающего момента.
у = √ (3·180000 /2·100·117 = 4.8038 см
h = 4.8038·(√ 117/9.2 + 1) = 21.9348 см или 22 см.
2. Момент сопротивления для приведенного сечения анизотропного материала.
Теперь рассмотрим полученные результаты с точки зрения классического изложения понятий о моменте сопротивления. Такое изложение носит достаточно абстрактный характер при отсутствии у студентов понимания, зачем этот самый момент сопротивления нужен. Поэтому я сначала показал практическое применение момента сопротивления, а теперь можно уже переходить к теоретической части. Итак:
Кстати еще одним способом упрощения решения задачи является рассмотрение не всего тела, а только одного его сечения, таким образом трехмерность окружающего нас объемного мира с его сложностями и неопределенностями заменяется двухмерностью плоскости (плоской фигуры), также имеющей неопределенности, но как минимум на одну меньше. Так как все физические тела имеют некую плотность (которая может обозначаться также как удельный или объемный вес, то для определения массы тела обычно умножают плотность тела на объем тела, который в свою очередь характеризуется такими параметрами как длина ширина и высота. Если рассматривать не все тело, а только некоторое сечение, очень-очень тонкое, т.е имеющее бесконечно малую длину (если вы видели слайсер, а тем более им пользовались, то приблизительно понимаете, что это означает), и постоянную плотность, то с математической точки зрения вполне корректным будет предположение, что
Рисунок 4. Центр тяжести условного сечения, имеющего площадь F.
F = ∑dF (2.1.1)
Если есть очень много свободного времени, то никто не запрещает измерить расстояния r от каждой элементарной площади dF до центра тяжести O сечения F. А затем полученные значения перемножить и сложить, проверив соблюдается ли условие. Однако знания математики позволяют сделать это намного быстрее и проще:
Из этого, казалось бы не сложного уравнения следует очень много выводов, например:
1. Если центр тяжести сечения является единственной достаточной точкой опоры для того, чтобы сечение оставалось в статическом состоянии, т.е в состоянии равновесия, то точки, лежащие на одной прямой, проходящей через центр тяжести сечения, также будут надежной опорой для сечения. Причем таких прямых можно провести бесконечно много. Однако нам много не надо, нам достаточно для начала хотя бы двух перпендикулярных прямых. А еще эти прямые можно считать осями координат и тогда задача еще более упростится, так как использование прямоугольной системы координат нам более привычно, чем радиальной. Обычно для определения параметров сечения используются оси х и у. Однако в данном случае мы имеем дело со строительной механикой и теорией сопротивления материалов. Строительная механика решает множество задач, в которых очень важное значение имеет длина конструкции при этом решение сводится к определению внутренних напряжений в различных поперечных сечениях, расположенных на расстоянии х от начала конструкции, т.е. от начала координат, поэтому более корректным мне кажется использование осей у и z для поперечных сечений:
Рисунок 5. Центр тяжести сечения, являющийся началом координат
2. В этом случае справедливыми будут следующие утверждения:
Однако оси координат далеко не всегда проходят через центр тяжести сечения и в этих случаях статические моменты относительно главных осей не равны нулю, проще говоря линейка, если линия опоры не проходит через центр тяжести, обязательно упадет, при этом чем дальше будет линия опоры (ось координат) тем большая сила потребуется, чтобы остановить это падение. Вот эту самую силу и ее направление некоторым образом и характеризуют статические моменты. Если известна площадь сечения и положение центра тяжести сечения, при этом оси координат через центр тяжести сечения не проходят, то статические моменты будут равны:
3. Статические моменты сечения или как их иногда называют, статические моменты площади, благодаря описанным выше свойствам, позволяют определить центр тяжести сечения любой геометрической сложности. Для этого сначала задается система координат с началом в произвольной точке, затем сложное сечение разбивается на простые, для которых определить центр тяжести достаточно легко, а после этого из преобразованных формул (2.1.5) и (2.1.6) определяется расстояние от центра тяжести сечения до начала координат:
Рисунок 6. Определение центра тяжести сложного сечения при известных площадях и центрах тяжести простых сечений.
F = N / R (2.2)
Эту площадь можно называть площадью сопротивления.
Примечание: Обозначений для площади существует несколько: S, F, A. Если обозначать площадь литерой S, то будут возникать аллюзии со статическим моментом или с энтропией; если А, то с амплитудой, работой и даже с ангстемом; если F, то с силой, а еще с прогибом. Дело в том, что для обозначения различных величин, открытых и применяемых в последние годы человечеством не хватает букв не только латинского, но и греческого алфавита, а общие тенденции развития науки говорят о том, что единственным спасением в этом деле смогут стать только иероглифы. Так как по ходу дела мы уже столкнулись со статическими моментами, то примем обозначение для площади F.
Однако нагрузка в поперечном сечении далеко не всегда прикладывается к центру тяжести сечения. Таким образом появляется плечо действия силы или пары сил и значит в рассматриваемом поперечном сечении может действовать не только сила, но и изгибающий момент, а при чистом изгибе только изгибающий момент. В ответ на это в материале возникает другой момент, направленный противоположно, и, исходя из условий равновесия, равный изгибающему моменту. А значит плечо действия ответного момента равно плечу действующего момента и тогда ответный момент логично названный «моментом сопротивления» равен равнодействующей нормальных напряжений, умноженной на плечо действия силы, в данном случае сопротивления материала (или пары сил, создающих момент относительно центра тяжести). Что и приводит нас к формуле (149:4.3). Даже графически обозначение момента сопротивления W является как бы зеркальным отражением изгибающего момента M. Это особенно заметно по следующей формуле:
(2.2.2)
Анизотропный материал можно рассматривать как множество соединенных между собой тел. При этом каждое тело может обладать своими геометрическими и прочностными характеристиками. Таким образом каждое такое тело может рассматриваться как самостоятельное, однако при этом необходимо учитывать расстояние от центра тяжести данного тела до центра тяжести общего сечения:
Wсечения тела + Fсечения · плечо (расстояние от центра тяжести рассматриваемого сечения до общего центра тяжести) (2.3)
Wc = Wпрямоугольника + Fпрямоугольника · плечо (половина высоты) = bh 2 /6 + bh·h/2 = 2bh 2 / 3 (2.3.1)
Как видим, окончательный результат остался таким же.
Теперь вооруженные полученными знаниями, мы можем решать более сложные задачи, например попробовать определить момент сопротивления для железобетонной конструкции и вскоре узнаем, что произойдет, если в нижнюю растягиваемую зону поперечного сечения плиты, рассматриваемой в качестве примера в п.1, добавить стальную арматуру.
При расчете железобетонных конструкций можно пользоваться следующими расчетными предпосылками:
1. Так как арматура, устанавливаемая в растягиваемой зоне бетона, имеет намного большее сопротивление растяжению, чем бетон, то сопротивление бетона растяжению для упрощения расчетов можно не учитывать. Таким образом мы повышаем прочность конструкции на 0.3-1%
2. Обычно моментом сопротивления арматуры относительно собственного центра тяжести, как относительно малой величиной по сравнению с моментом сопротивления относительно общего центра тяжести, для упрощения расчетов пренебрегают, тогда момент сопротивления арматуры будет составлять:
Примечание: В данном случае мы также рассматриваем не просто растянутую часть поперечного сечения, а некое условное сечение, в котором и в верхней и в нижней части действуют растягивающие напряжения, поэтому для определения момента сопротивления правую часть уравнения нужно умножить на 2. А так как диаметр арматуры мал по сравнению с расстоянием от центра тяжести арматуры до центра тяжести сечения, то мы можем допустить, что растягивающие напряжения, возникающие в арматуры постоянны по высоте сечения арматуры и максимальны, а это означает, что делить правую часть уравнения на 2, как при определении момента сопротивления сжатой части, не нужно.
3. При использовании арматуры класса А400 с расчетным сопротивлением растяжению Rр, в последнее время все чаще обозначаемым как Rs = 3600 кг/см 2 (но я далее буду придерживаться обозначения Ra, чтобы было понятно, что это арматура):
Если продолжать рассматривать работу конструкции в области упругих деформаций, то для бетона, работающего в сжатой области, значение у можно принимать такое же как и в п.1, и тогда мы можем подобрать сечение арматуры при заданной высоте сечения, например при h = 10 см, а = 2 см, h0 = 8 см.
Такой расчет называется расчетом по допускаемым напряжениям, предполагает упругую модель деформации тела и в настоящее время для расчета железобетонных конструкций не используется.
Устранить эту разницу можно, принимая основные положения расчета ж/б конструкций по предельным состояниям, т.е. допуская в сжатой зоне бетона образование пластического шарнира, и возникающее при этом перераспределение напряжений и соответственно уменьшение высоты сжатой зоны бетона. Однако я не советую делать это при расчетах конструкций частного малоэтажного строительства. Дело в том, что все равно потребуется расчет по деформациям, а как показывает практика, для шарнирно опертых балок деформации превышают допустимые. К тому же высота защитного слоя является недопустимой при таком диаметре арматуры и по хорошему плиту нужно пересчитывать на ho = 7 см, или увеличить высоту плиты, но пока этого делать не будем.
Пример приближенного расчета прогиба железобетонной плиты (расчет по предельным состояниям второй группы)
1. Так как у нас нет армирования в верхней части плиты, то на сжатие будет работать только бетон и в результате этого сжатия плита деформируется.
2. В нижней части плиты на растяжение работает только арматура. В результате деформации арматуры плита также прогнется.
3. В идеале величина прогиба от деформации сжимаемого бетона и от деформации растягиваемой арматуры должна быть одинаковой.
4. Если величина прогиба будет неодинаковой, то по полученным значениям отдельно для бетона и отдельно для арматуры можно определить некоторое среднее значение прогиба, которое будет приблизительно соответствовать реальному прогибу железобетонной конструкции.
5. Если величина прогиба в результате растяжения арматуры будет больше, чем при сжатии бетона, то допустимо уменьшить высоту сжатой зоны бетона. Это будет означать образование пластического шарнира в сжатой зоне бетона. При этом высота сжатой зоны бетона не может быть уменьшена больше, чем в 1.5 раза, в противном случае высота пластического шарнира станет критической и это может привести к обрушению конструкции. Уменьшать высоту растянутой зоны недопустимо, так как это может привести к обрушению конструкции.
Данные предпосылки позволяют использовать для расчетов стандартные формулы строительной механики для любых вариантов загружения балок. В данном случае мы рассчитывали плиту перекрытия как балку с шарнирными опорами и равномерно распределенной нагрузкой. Для такой балки прогиб поперечного сечения посредине балки составит:
f = 5ql 4 /(384EI) (174.6.4.4)
fb = 5·9·400 4 /384·275000·7372.8 = 1.45 см.
Проверим возможный прогиб от растяжения арматуры.
fa = 5·9·400 4 / 384·2000000·160.8 = 7.9 см
Доступ к полной версии этой статьи и всех остальных статей на данном сайте стоит всего 30 рублей. После успешного завершения перевода откроется страница с благодарностью, адресом электронной почты и продолжением статьи. Если вы хотите задать вопрос по расчету конструкций, пожалуйста, воспользуйтесь этим адресом. Зараннее большое спасибо.)). Если страница не открылась, то скорее всего вы осуществили перевод с другого Яндекс-кошелька, но в любом случае волноваться не надо. Главное, при оформлении перевода точно указать свой e-mail и я обязательно с вами свяжусь. К тому же вы всегда можете добавить свой комментарий. Больше подробностей в статье «Записаться на прием к доктору»
Для терминалов номер Яндекс Кошелька 410012390761783
Номер карты Ymoney 4048 4150 0452 9638 SERGEI GUTOV
Спасибо, Доктор, все стало на свои места.
Получение преднапряженного состояния арматуры в частном домостроении достаточно непростая задача, я полагаю. А существуют какие-нибудь «народные» способы это сделать? И насколько преднапряженное состояние арматуры улучшает характеристики ЖБИ (если возможно в цифрах)?
Спасибо.
Спасибо за развернутый ответ.
Считаю должным исправить ряд ошибок, в предыдущем тексте.
Естественно изогнутая(изогнутая до нагружения) конструкция называется вспарушенной балкой или оболочкой. В отличии от арки такая конструкция не воспринимает распор(как рессора авто).
Преднапряжение применяется для уменьшения прогибов и, в основном, повышения трещиностойкости конструкции. Ни каких запасов прочности преднапряжение не дает.
1. Текст, в котором вы считаете должным исправить ряд ошибок, адресован человеку, скорее всего слабо разбирающемуся в строительных терминах, а потому написан с максимальной степенью упрощения.
2. Термин «вспарушенный» как раз и означает, что рассматриваемая пластина (оболочка) может рассматриваться как арка в одной или в двух взаимно перпендикулярных плоскостях, а так как вспарушенные своды имеют достаточно сложную геометрическую форму и могут иметь всего 4 точечных опоры, при этом в двух перпендикулярных плоскостях сечение пластины представляет собой ту же арку, то такая конструкция в целом и напоминает парус.
3. Ваше утверждение о том, что вспарушенная конструкция не воспринимает распор, сформулировано некорректно, во-первых потому, что под действием вертикальной нагрузки вспарушенный свод создает (а не воспринимает) распор, т.е. возникают горизонтальные опорные реакции, а вот для восприятия этих горизонтальных реакций и уменьшения передачи горизонтальных нагрузок на опоры делаются кружала или армировочный пояс.
4. По поводу запаса прочности. Вы слишком придираетесь к словам, вырванным из контекста. По смыслу должно быть понятно, что конструкция с предварительно напряженной арматурой может выдержать нагрузку на 10-15% больше, чем такая же конструкция с той же арматурой, но без предварительного напряжения. Конечно, более правильно было бы охарактеризовать это, как «увеличение несущей способности конструкции при использовании предварительного напряжения», я назвал это «запасом прочности». Почему? Смотрите п.1.
Док, пересчитайте пож Пример расчета бетонного элемента прямоугольной формы на действие изгибающего момента, нагрузка 180 т/см от нагрузки 900 кг/м как-то многовато даже для небоскреба из урана.
у меня получились другие цифры, плюс ошибка в разрядах. Не могу понять разницу между погонной нагрузкой и на м2 (см2), а также перевод в Н/М2 (Н/см2). При распределенной нагрузке 400 кг/м2 можно считать погонную 400 кг/м?
К сожалению, ни чем не могу вам помочь. Изгибающий момент действительно будет 180 т·см при нагрузке 900 кг/м и при пролете шарнирно опертой плиты l = 4 м.
Ваша формулировка «нагрузка 180 т/см от нагрузки 900 кг/м» мне не совсем понятна, думаю, вы просто ошиблись.
По поводу линейно распределенной нагрузки и нагрузки, распределенной на некоторой площади, смотрите статьи «Виды нагрузок или в чем сила, сопромат?» и «Определение нагрузки на конструкции в вопросах и ответах».
Док, спасибо за лекарство!При моем электронном образовании жизнь заставила лезть в дебри сопромата:) Еще вопрос: почему при расчете жб плиты, например 4х4, берете 1м её ширины? С условием, что расчетные данные можно применить к остальным метрам? Ведь даже по эпюрам видно, что нагрузки изменятся. И если взять для расчета 10 см плиты или полную длину, то результат меняется в десяток раз?
В литературе встретил: при расчете жб плиты 6х3,3 соотношение сторон 1,8 метра, шарнирно опертой,опирание по контуру,нагрузка рассчитывается при опирании по коротким сторонам,М=q*L1^2*L2/8.Как оцениваете рецепт?
Док, спасибо за ответ. Еще вопрос: чем отличаются расчеты в Ваших статьях «Расчет железобетонной плиты перекрытия, опертой по контуру» и «Расчет железобетонной плиты перекрытия»? Разные методики? Мне, как неспециалисту, тяжело въехать.
Так я вроде уж пояснил, в статье «Расчет железобетонной плиты перекрытия» рассматривается расчет плиты-балки по методике, сформулированной в действующем СНиПе. В статье «Расчет железобетонной плиты перекрытия, опертой по контуру» рассматривается расчет плиты-пластины. Методика в обоих случаях приблизительно одинаковая, разнится только подход к напряженному состоянию конструкции.
Здраствуйте Я хочу вычислат W сопротивлени момента для С-образный профили
Посмотрите статью «Расчет прочности потолочного профиля для гипсокартона», там как раз проводится расчет для С-образного профиля.
Уважаемый Доктор столкнулся с проблемой расчета стальных профилей с трапециевидными гофрами ГОСТ 24045-94. Суть в следующем: есть профиль Н114-600-0,8. Высота профиля 114 мм. Момент инерции поперечного сечения согласно ГОСТ 320,9 см в 4-й. Момент сопротивления min при сжатых узких полках(см. табл. ГОСТ) 53,3 см в 3-й. То есть Ymax (расстояние до центра тяжести сечения) равно 320,9/53,3 = 6,02 см.
Момент сопротивления max сжатых узких полках (см. табл. ГОСТ) 59,7 см в 3-й. Соответственно Ymin = 320,9/59,7 = 5,38 см. Таким образом получаем 6,02 + 5,38 =11,4 см (114 мм) то есть высота профиля. Аналогично проделаем эти же операции но при сжатых широких полках.
Момент инерции поперечного сечения 320,9 см в 4-й. Момент сопротивления min при сжатых широких полках(см. табл. ГОСТ) 52,4 см в 3-й. То есть Ymax (расстояние до центра тяжести сечения) равно 320,9/52,4 = 6,12 см.
Момент сопротивления max сжатых широких полках (см. табл. ГОСТ) 55,8 см в 3-й. Соответственно Ymin = 320,9/55,8 = 5,75 см. Таким образом получаем 6,12 + 5,75 = 11,9 см (119 мм) то есть больше высоты профиля. Как такое могло получиться?
Искренне буду вам признателен если поможете разобраться с это проблемой.
Я в составлении данного ГОСТа участия не принимал, потому могу только высказать свое личное мнение по этому поводу.
Дело в том, что при расчете сжимаемых элементов важна не только прочность, но и устойчивость. И чем больше длина элемента, тем сильнее это влияет на устойчивость. Соответственно, когда в зоне сжатия оказываются широкие полки, то значение момента сопротивления конечно же никоим образом не изменяется, однако, чтобы не возиться с дополнительными и довольно громоздкими расчетами, в ГОСТе дается значение момента сопротивления с учетом значения коэффициента продольного изгиба для данных элементов.
Доктор, уточните пожалуйста формулу 2.4. Сижу над курсовиком по ЖБК, обложился методичками, книжками и Интернетом, и начинаю дико ненавидеть сопромат за очепятки и недоговорки.
Данная статья предназначена для ознакомления с физическими основами расчета ЖБК, а не для выполнения расчетов. Современные методики расчета строятся на несколько иных допусках и предположениях и в них больше эмпирических формул.
Тем не менее физический смысл указанной вами формулы следующий: момент сопротивления арматуры относительно нейтральной оси сечения элемента равен собственно моменту сопротивления арматуры (которым из-за малого значения можно пренебречь) и произведения площади арматуры на расстояние от центра тяжести арматуры до нейтральной оси сечения, обозначенного литерой «у». А из приведенных выше формул следует, что этот момент сопротивления также равен произведению изгибающего момента на расчетное сопротивление стали.
hello!,I like your writing very a lot! proportion we keep in touch more approximately your article on AOL? I require a specialist on this area to unravel my problem. May be that’s you! Looking forward to look you. fdeddbcdaeeeeefe
Примечание: Возможно ваш вопрос, особенно если он касается расчета конструкций, так и не появится в общем списке или останется без ответа, даже если вы задатите его 20 раз подряд. Почему, достаточно подробно объясняется в статье «Записаться на прием к доктору» (ссылка в шапке сайта).