На чем сделан python

Язык программирования Python: преимущества, недостатки и область применения

Как устроен Python, чем он хорош, а также кто, как и зачем использует его в работе. Гайд для программистов и интересующихся Python.

На чем сделан python. Смотреть фото На чем сделан python. Смотреть картинку На чем сделан python. Картинка про На чем сделан python. Фото На чем сделан python

На чем сделан python. Смотреть фото На чем сделан python. Смотреть картинку На чем сделан python. Картинка про На чем сделан python. Фото На чем сделан python

Python — это скриптовый язык программирования. Он универсален, поэтому подходит для решения разнообразных задач и многих платформ, начиная с iOS и Android и заканчивая серверными ОС.

Преимущества Python

Это интерпретируемый язык — он не компилируется, то есть до запуска представляет из себя обычный текстовый файл. Программировать можно практически на всех платформах, язык хорошо спроектирован и логичен.

Разработка идёт в разы быстрее, потому что кода здесь куда меньше, чем на других языках. И ещё Python отлично подходит новичкам. Именно с него можно начать свой путь программиста, пройдя практический курс «Python-разработчик» от Skillbox.

На чем сделан python. Смотреть фото На чем сделан python. Смотреть картинку На чем сделан python. Картинка про На чем сделан python. Фото На чем сделан python

Пишет о программировании, в свободное время создает игры. Мечтает открыть свою студию и выпускать ламповые RPG.

Как используется Python

Его можно встретить в вебе и на мобильных устройствах, в приложениях и решениях, связанных с машинным обучением (нейросети и искусственный интеллект), а также в качестве встроенной системы.

Веб-разработка

Чаще всего Python используется в веб-разработке. Для работы с ним подключают фреймворки: Pyramid, Pylons, TurboGears, Flask, CherryPy и — самый популярный — Django.

Существуют и движки для создания сайтов на Python:

Также на Python пишут парсеры для сбора информации в интернете.

Программы

Хоть язык не компилируется, с помощью него создают десктопные программы. Вот, к примеру, что было разработано на Python:

Мобильные приложения

Мобильная разработка на Python менее популярна. Для Android чаще пишут на Java, C#, C++ или Kotlin, а для iOS — на Swift или Objective-C. На Python обычно программируют серверную часть приложения. Например, клиент Instagram для iOS написан на Objective-C, а сервер — на Python.

Многие компьютерные игры были полностью или частично написаны на Python. Существует заблуждение, что этот язык не подходит для серьёзных проектов, но на самом деле он использовался в разработке таких хитов, как:

Несмотря на возможность реализации пользовательского интерфейса и работы с графикой, на Python в основном пишут скрипты — например, взаимодействия персонажей, запуска сцен, а также обработки событий.

Встроенные системы (embedded systems)

На Python разрабатывают встроенные системы для различных устройств. Например, язык прижился в Raspberry Pi (компьютер размером с карту памяти) и в «Сбербанке» для управления банкоматами.

Еще проекты со встроенной системой на Python:

Язык применяется во встроенных системах станков с ЧПУ, средствах автоматического регулирования (температуры, расхода жидкостей, давления и так далее) и в телекоммуникационном оборудовании.

Создание скриптов

Python подходит для написания плагинов и скриптов к уже готовым программам. Например, для реализации игровой логики или создания дополнительных модулей. Скрипты на этом языки встраивают и в программы на других языках, чтобы автоматизировать какие-либо задачи.

Где используется Python

Python широко распространен во многих сферах: от системного администрирования до Data Science.

Системное администрирование

Системным администраторам Python нужен для автоматизации задач. Он простой, мощный и поддерживает специальные пакеты, которые повышают его эффективность. И, самое главное, он по умолчанию установлен на все серверы с ОС Linux.

Благодаря лаконичности Python можно быстро прочитать код и найти слабые места. Форматирование в языке — часть синтаксиса.

Научные исследования

В Python есть несколько библиотек, которые пригодятся для проведения исследований и вычислений:

Благодаря библиотекам и простоте освоения языка многие учёные выбирают Python — особенно он популярен у математиков и физиков.

Data Science

Python — один из самых используемых в Data Science языков. На нём пишут алгоритмы программ с машинным обучением и аналитические приложения. С помощью него обслуживают хранилища данных и облачные сервисы.

Также он помогает парсить данные из интернета. Например, в Google Python применяют для индексации сайтов.

Какие компании используют Python

В основном Python используется стартапами и компаниями, которые разрабатывают крупные проекты. Вот лишь часть огромного списка:

Кроме того, его используют в Instagram, Positive Technologies, Houdini, Facebook, Yahoo, Red Hat, Dropbox, Pinterest, Quora, Mail.ru и Яндексе.

Недостатки языка Python

Несмотря на все достоинства, у языка есть и недостатки.

Программы на Python считаются одними из самых медленных.

Приложения для iOS на Swift работают в 8,7 раз быстрее, чем на Python. Реализация PyPy по скорости близка к Java, но в ней есть не все возможности оригинального языка. Python не подходит для задач, требующих большого объёма памяти, — их лучше решать вставками на C или C++.

Сильная зависимость языка от системных библиотек

Из-за этого затрудняется перенос на другие системы. Для этих целей существует инструмент Virtualenv, но и он с недостатками: избыточность полных методов изоляции, костыли, дублирование системных библиотек.

Global Interpreter Lock (GIL) не позволяет выполнять несколько потоков Python одновременно в реализации CPython.

Однако GIL можно отключить на какое-то время, как это сделано в математическом пакете NumPy.

Трудоустройство и средняя зарплата Python-разработчика

По данным с hh.ru на начало 2019 года, в России

4500 вакансий для Python-разработчиков, из них

700 в Санкт-Петербурге. Это меньше, чем по запросу «Java» (

5500), но больше, чем по запросу «PHP» (

Тенденция в том, что Python медленно забирает позиции PHP с рынка веб-разработки. Хотя на PHP всё ещё написано около 80% всех сайтов в интернете.

На чем сделан python. Смотреть фото На чем сделан python. Смотреть картинку На чем сделан python. Картинка про На чем сделан python. Фото На чем сделан python

Минимальная зарплата по России начинается с 70 000 рублей, а в Москве — с 80 000 рублей. В основном ищут опытных разработчиков, junior-специалисты менее востребованы.

На должность стажёра или младшего специалиста можно устроиться только в крупную компанию, а расположены они в больших городах типа Москвы и Санкт-Петербурга. Из-за этого новичкам крайне сложно устроиться в регионах — остаётся искать заказы на фрилансе.

Если вас заинтересовал Python, пройдите курс от Skillbox — тут вы не только получите необходимые знания и навыки, но и сможете составить привлекательное резюме и добавить дипломную работу в портфолио.

Источник

Почему существует так много Питонов?

Удивительно, но это довольно неоднозначное заявление. Что я имею ввиду под “Питоном”? Может, абстрактный интерфейс Питона? Или CPython, распространенная реализация Питона (не путать с похожим по названию Cython)? Или я имею ввиду что-то совсем иное? Может, я косвенно ссылаюсь на Jython, или IronPython, или PyPy. Или может я отвлекся так сильно, что говорю о RPython или RubyPython (которые очень сильно отличаются).

Не смотря на схожесть в названиях указанных выше технологий, некоторые из них имеют совсем другие задачи (или, как минимум, работают совершенно иными способами)

При работе с Питоном я столкнулся с кучей таких технологий. Инструменты *ython. Но лишь недавно я уделил время, чтобы разобраться, что они собой представляют, как они работают и почему они (каждая по-своему) необходимы.

В этом посте я начну с нуля и пройдусь по разным реализациям Питона, а закончу подробным введением в PyPy, за которым, по моему мнению, будущее языка.

Все начинается с понимания того, чем на самом деле является “Питон”.

Если у вас хорошее понимание машинного кода, виртуальных машин и так далее, можете пропустить этот раздел.

Питон интерпретируемый или компилируемый?

Это распространенный источник непонимания среди новичков Питона.

Первое, что необходимо понять: “Питон” – это интерфейс. Существует спецификация, описывающая, что должен делать Питон, и как он должен себя вести (что справедливо для любого интерфейса). И существует несколько имплементаций (что также справедливо для любого интерфейса).

Второе: “интерпретируемый” и “компилируемый” это свойства имплементации, но не интерфейса.

Так что сам вопрос не совсем корректен.

В случае с самой распространенной реализацией (CPython: написанный на C, часто называемый просто “Python”, и, конечно, именно тот, который вы используете, если понятия не имеете о чем я толкую) ответ: интерпретируемый, с некоторой компиляцией. CPython компилирует* исходный код на Питоне в байткод, а затем интерпретирует этот байткод, запуская его в процессе.

* Замечание: это не совсем “компиляция” в традиционном смысле. Обычно, мы считаем, что “компиляция” это конвертация из высокоуровневого языка в машинный код. Тем не менее – в некотором роде это “компиляция”.

Давайте изучим этот ответ получше, так как он поможет нам понять некоторые концепции, ожидающие нас в этой статье.

Байткод или машинный код

Очень важно понять разницу между байткодом и машинным (или нативным) кодом. Пожалуй, легче всего ее понять на примере:

— Cи компилируется в машинный код, который впоследствии запускается напрямую процессором. Каждая инструкция заставляет процессор производить разные действия.
— Java компилируется в байткод, который впоследствии запускается на Виртуальной машине Java (Java Virtual Machine, JVM), абстрактном компьютере, который запускает программы. Каждая инструкция обрабатывается JVM, который взаимодействует с компьютером.

Сильно упрощая: машинный код намного быстрее, но байткод лучше переносим и защищен.

Машинный код может отличаться в зависимости от машины, тогда как байткод одинаковый на всех машинах. Можно сказать, что машинный код оптимизирован под вашу конфигурацию.

Возвращаясь к CPython, цепочка операций выглядит следующим образом:

1. CPython компилирует ваш исходный код на Питоне в байткод.
2. Этот байткод запускается на виртуальной машине CPython.

Альтернативные виртуальные машины: Jython, IronPython и другие

Как я говорил выше, у Питона существует несколько реализаций. Опять же, как говори-лось выше, самой популярной является CPython. Эта версия Питона написана на C и считается имплементацией “по умолчанию”.

Но как насчет альтернатив? Одна из наиболее видных это Jython, реализация Питона на Java, которая использует JVM. В то время как CPython генерирует байткод для запуска на CPython VM, Jython генерирует байткод Java для запуска на JVM (это то же самое, что генерируется при компиляции программы на Java).

На чем сделан python. Смотреть фото На чем сделан python. Смотреть картинку На чем сделан python. Картинка про На чем сделан python. Фото На чем сделан python

“Зачем может понадобиться использовать альтернативную реализацию?”, спросите вы. Ну, для начала, разные реализации хорошо ладят с разными наборами технологий.

CPython упрощает написание C-расширений для кода на Питоне потому что в конце он запускается интерпретатором Cи. Jython в свою очередь упрощает работу с другими программами на Java: вы можете импортировать любые Java-классы без дополнительных усилий, призывая и используя ваши Java-классы из программ на Jython. (Замечание: если вы еще не думали об этом всерьез, это довольно безумно. Мы дожили до того времени, когда можно смешивать разные языки и компилировать их в одну сущность. Как заметил Rostin, программы, смешивающие код на Фортране с Cи появились довольно давно, так что это не совсем новинка. Но это все же круто.)

В качестве примера, вот корректный код на Jython:

[Java HotSpot(TM) 64-Bit Server VM (Apple Inc.)] on java1.6.0_51
>>> from java.util import HashSet
>>> s = HashSet(5)
>>> s.add(«Foo»)
>>> s.add(«Bar»)
>>> s
[Foo, Bar]

Можно сказать, что Jython: Java :: IronPython: C#. Они работают на соответствующих виртуальных машинах, есть возможность импортировать классы C# в код IronPython и классы Java в код Jython, и так далее.

На чем сделан python. Смотреть фото На чем сделан python. Смотреть картинку На чем сделан python. Картинка про На чем сделан python. Фото На чем сделан python

Кстати, хоть это и не станет причиной для перехода на другую имплементацию, стоит упомянуть, что имплементации эти на самом деле отличаются поведением. Это касается не только способов интерпретации кода на Питоне. Однако эти отличия, как правило, не-значительны, они исчезают и появляются со временем из-за активной разработки. К примеру, IronPython использует строки Unicode по умолчанию; однако CPython использует ASCII в версиях 2.x (выдавая ошибку UnicodeEncodeError для не-ASCII символов), и при этом поддерживает символы Unicode по умолчанию в версиях 3.x.

Компиляция на лету (Just-in-Time Compilation): PyPy и будущее

Итак, у нас есть имплементация Питона, написанная на Си, еще одна – на Java, и третья на C#. Следующий логичный шаг: имплементация Питона, написанная на… Питоне. (Подготовленный читатель заметит, что это утверждение немного обманчиво).

Вот почему это может сбивать с толку. Для начала, давайте обсудим компиляцию на лету (just-in-time или JIT).

JIT. Почему и как

Напомню, что нативный машинный код намного быстрее байткода. Ну, а что, если бы можно было компилировать часть байткода и запускать его как нативный код? Пришлось бы “заплатить” некоторую цену (иными словами: время) за компиляцию байткода, но если результат будет работать быстрее, то это здорово! Этим и мотивируется JIT-компиляция, гибридная техника, которая совмещает в себе преимущества интерпретато-ров и компиляторов. В двух словах – JIT старается использовать компиляцию, чтобы ускорить систему интерпретации.

Например, вот распространенный подход JIT:

В этом вся суть PyPy: использовать JIT в Питоне (в дополнении можно найти предыдущие попытки). Конечно, есть и другие цели: PyPy нацелен на кроссплатформенность, работу с небольшим количеством памяти и поддержку stackless (отказа от стека вызовов языка Си в пользу собственного стека). Но JIT это главное преимущество. В среднем на основе временных тестов, фактор ускорения составляет 6.27. Более подробные данные можно получить из схемы от PyPy Speed Center:

На чем сделан python. Смотреть фото На чем сделан python. Смотреть картинку На чем сделан python. Картинка про На чем сделан python. Фото На чем сделан python

В PyPy сложно разобраться

У PyPy есть огромный потенциал, и в данный момент он хорошо совместим с CPython (так что на нем можно запускать Flask, Django, и т.д.).

Но с PyPy есть много путаницы. (оцените, к примеру, это бессмысленное предложение создать PyPyPy…). По моему мнению основная причина в том, что PyPy одновременно является:

1. Интерпретатором Питона, написанным на RPython (не Python (я обманул вас до этого)). RPython это подмножество Python со статичной типизацией. В Python, вести тщательные беседы о типах “в целом невозможно” почему это так сложно? рассмотрите следующее:

x = random.choice([1, «foo»])

это корректный код на Python (спасибо Ademan‘у). Какой тип у x? Как мы можем обсуждать типы переменных, когда типы даже не форсируются?). В RPython мы жертвуем некоторой гибкостью, но взамен получаем возможность гораздо проще управлять памятью и много чего еще, что помогает при оптимизации.

2. Компилятором, который компилирует код на RPython в разные форматы и поддерживает JIT. Платформой по-умолчанию является Си, то есть компилятор RPython-в-Си, но в качестве целевой платформы также можно выбрать JVM и другие.

Для простоты описания, я буду называть их PyPy (1) и PyPy (2).

Зачем могут понадобиться эти две вещи, и почему – в одном наборе? Думайте об этом так: PyPy (1) это интерпретатор, написанный на RPython. То есть он берет пользовательский код на Питоне и компилирует его в байткод. Но чтобы сам интерпретатор (написанный на RPython) мог работать, он должен быть интерпретирован другой реализацией Пи-тона, верно?

Итак, можно просто использовать CPython чтобы запускать интерпретатор. Но это будет не слишком быстро.

Вместо этого мы используем PyPy (2) (называемый RPython Toolchain) чтобы компилировать интерпретатор PyPy в код для другой платформы (например, C, JVM, или CLI) для запуска на конечной машине, с добавлением JIT. Это волшебно: PyPy динамически добавляет JIT к интерпретатору, генерируя собственный компилятор! (Опять же, это безумие: мы компилируем интерпретатор, добавляя другой отдельный, самостоятельный компилятор).

В конце концов результатом будет самостоятельный исполняемый файл, который интерпретирует исходный код на Питоне и использует оптимизацию JIT. То, что нужно! Понять сложновато, но, возможно, эта схема поможет:

На чем сделан python. Смотреть фото На чем сделан python. Смотреть картинку На чем сделан python. Картинка про На чем сделан python. Фото На чем сделан python

Повторим: настоящая красота PyPy в том, что мы можем написать себе кучу разных интерпретаторов Питона на RPython не волнуясь о JIT (не считая пары деталей). После этого PyPy реализует для нас JIT, используя RPython Toolchain/PyPy (2).

На самом деле, если копнуть глубже в абстракцию, теоретически можно написать интерпретатор любого языка, направить его в PyPy и получить JIT для этого языка. Это возможно потому, что PyPy концентрируется на оптимизации самого интерпретатора, а не деталей языка, который тот интерпретирует.

В качестве отступления я бы хотел заметить, что сам JIT совершенно восхитителен. Он использует технику под названием “отслеживание” (tracing), которая работает следующим образом:

Узнать больше можно из этой легкодоступной и очень интересной публикации.

Подытожим: мы используем PyPy-компилятор RPython-в-Си (или другую целевую плат-форму), чтобы скомпилировать реализованный на RPython интерпретататор PyPу.

Заключение

Почему все это так восхитительно? Почему стоит гнаться за этой безумной идеей? По-моему, Алекс Гейнор объяснил это очень хорошо в своем блоге: “[За PyPy будущее] потому что [он] более быстрый, более гибкий и является лучшей платформой для развития Питона”.

Дополнение: другие названия, которые вы, возможно, слышали

Python 3000 (Py3k): альтернативное название Python 3.0, основной релиз Питона с обратной совместимостью, который появился в 2008. году. Команда Py3k предсказала, что новой версии понадобится примерно пять лет чтобы полностью прижиться. И в то время, как большинство (внимание: надуманное утверждение) разработчиков на Питоне продолжают использовать Python 2.x, люди все больше задумываются о Py3k.

Numba: “специализированный just-in-time компилятор”, который добавляет JIT в снабженный примечаниями код на Питоне. Проще говоря, вы даете ему подсказки, а он ускоряет некоторые части вашего кода. Numba является частью дистрибутива Anaconda набора пакетов для анализа и управления данными.

IPython: сильно отличается от всего, что мы обсудили. Вычислительная среда для Питона. Интерактивная, с поддержкой GUI-пакетов, браузеров и так далее.

Psyco: модуль расширения Питона, одна из первых попыток Питона в области JIT. Давно помечен как “неподдерживаемый и мертвый”. Главный разработчик Psyco Армин Риго сейчас работает над PyPy.

Привязки к языкам
JavaScript фреймворки

Источник

Язык Python: что это такое, как использовать и где применяется

Что такое питон простыми словами

Для того чтобы понять, что такое Python нужно разобраться зачем вообще нужны языки программирования. Они нужны для взаимодействия человека и компьютера. Между собой люди общаются на естественном языке.

На чем сделан python. Смотреть фото На чем сделан python. Смотреть картинку На чем сделан python. Картинка про На чем сделан python. Фото На чем сделан pythonЯзык программирования Python

Питон является относительно простым высокоуровневым скриптовым языком, который служит для создания различных сценариев. Это означает, что для программирования на Python, не требуется знания машинных кодов — команд для компьютера.

Под скриптовым языком программирования можно понимать то, что выполнение программы происходит сверху вниз построчно.

Программирование при помощи машинных кодов ускоряет программу, но очень трудоемко и требует хорошего знания архитектуры компьютера. Одним из таких низкоуровневых языков является ассемблер. Чаще всего низкоуровневое программирование используется в промышленности для специализированных контроллеров, где нет большого объема памяти.

Python может использоваться для программирования контроллеров в станках ЧПУ и в робототехнике. Популярный во всем мире одноплатный микрокомпьютер Raspberry Pi также программируется на питоне. С помощью «малинки» можно программировать роботов, умные дома, квадрокоптеры и множество других вещей. Pi в названии миникомпьютера обозначает, что программирование происходит на Python.

На чем сделан python. Смотреть фото На чем сделан python. Смотреть картинку На чем сделан python. Картинка про На чем сделан python. Фото На чем сделан pythonодноплатный микрокомпьютер Raspberry Pi

На языке высокого уровня нужно уметь программировать при помощи понятий, обозначаемых словами. Чаще всего это английский язык, но есть и примеры кодирования на других языках. Например, программу «Бухгалтерия 1С» можно редактировать и изменять на русском.

Питон поддерживает объектно-ориентированное программирование и является интерпретируемым языком. Это означает, что программа выполняется построчно и для ее выполнения на компьютере должен быть установлен интерпретатор. Самым распространенным и популярным интерпретатором является CPython.

История появления

Кто создал Python

Питон был задуман в еще в далеких 80 — х программистом из Голландии Гвидо ван Россумом. Создавать его Гвидо начал в 1989 году как замену языку ABC, предназначенного для обучения студентов программированию. Он создавался на энтузиазме, без бюджета и поддержки.

Работал Гвидо ван Россум по вечерам и в выходные дни. В результате за несколько недель был написан интерпретатор Python. Многие идеи были взяты из других языков программирования таких как C и ABC. В итоге из этого проекта вырос Python, входящий в тройку самых популярных языков мира.

Почему так назвали

Гвидо ван Россум был поклонником комедийного телешоу «Летающий цирк Монти Пайтона» и в честь этого английского сериала, популярного в 1970 – х годах дал название своему языку программирования Python. Этот сериал принес еще одно очень популярное сегодня слово «спам». Оно обозначает навязчивую рекламу, с которой знаком каждый.

Этапы развития Python

Публикация исходного текста Python произошла в 1991 году. Язык был относительно несложным. В нем было мало функций и интерпретатор «interpreter» тоже был небольшого размера.

Всего было 3 версии питона:

Как работает Python

После того, как написан код, должна произойти его обработка интерпретатором Python. Что такое обработка?

На чем сделан python. Смотреть фото На чем сделан python. Смотреть картинку На чем сделан python. Картинка про На чем сделан python. Фото На чем сделан pythonофициальный сайт Python с интерпретатором

Для этого интерпретатор должен быть установлен на вашем компьютере. В целом обработка кода происходит в четыре этапа:

Программу в питоне часто называют скрипт или сценарий.

Всю информацию по обработке кода можно найти в документации Python в открытом доступе.

Синтаксис питона

Для того, чтобы было удобнее работать программистам с языком Python был придуман достаточно простой синтаксис. Приведу основные принципы.

Есть еще некоторые специальные случаи, которые лучше рассмотреть отдельно.

Что есть внутри Python 3

Что такое базовые структуры данных:

В питоне всего семь типов операторов:

Битовые они исполняют побитовую операцию или, можно сказать, производят работу над операндами бит за битом. Бинарное «И» «&», бинарное «ИЛИ» «», бинарное «ИЛИ НЕТ» «^», инвертирующий оператор (

), бинарный сдвиг влево « >».

Приоритет арифметических операций:

Циклы

Циклом называется многократное повторение каких-либо операций, которое зависит от заданных условий. Циклы значительно упрощают написание программ, и в цикле присутствует условие и тело цикла.

Тело цикла – последовательность операций или кода, которая может выполняться несколько раз.

Итерация «iteration» — однократное повторение тела цикла. Итерируемый объект – повторяемый объект «iterable». Он отдает один результат за итерацию. «Iterator» итератор — это объект, который позволяет получить следующий элемент цикла.

В Python можно использовать два цикла while и for.

while :

Блок кода выделяется табуляцией, которая обычно составляет 4 пробела. В цикле могут быть опции «else», «elif» принудительная остановка, пропуск остатка цикла «continue». Цикл может быть бесконечным.

for in :

В цикле «for» происходит поочередный перебор последовательности нужное количество раз. Все операторы «else», «break», «continue» аналогичны операторам в цикле «while». Для исполнения скрипта определенное количество раз используется функция «range».

Функции

Функция – это часть кода, принимающая аргументы и возвращающая вычисленное значение. Аргумент – это объект, отправляемый в функцию. Аргументом может быть какое-нибудь значение или ссылка на него.

На чем сделан python. Смотреть фото На чем сделан python. Смотреть картинку На чем сделан python. Картинка про На чем сделан python. Фото На чем сделан pythonфункции языка программирования Python

В функции используются параметры и их число не ограничено. Число аргументов соответствует параметрам. Функцию можно объявить в любом месте. Она записывается как:

def (): — после определения функции ставиться двоеточие, аргументы функции заключаются в круглые скобки. После двоеточия идет со следующей строки отступ и тело функции.

Для выхода из функции используется оператор return, который возвращает значения. Если оператор return не указан, то произойдет возврат значения None.

Функции бывают встроенные и пользовательские. В интерпретаторе Python есть ряд часто используемых функций. Они всегда доступны и можно посмотреть документацию с их описанием и примерами применения. Например, при помощи функции input () можно ввести данные с клавиатуры, а при помощи функции print () вывести данные в консоль. Так, print (“Hello, World!”) выводит строку «Hello, World!».

Еще одной интересной функцией является декоратор. Декоратор позволяет расширить возможности функции, не меняя ее кода, при помощи обертывания функции другой функцией.

Существует возможность написать свою собственную функцию для нужных задач. Кроме этого есть много функций, которые существуют в библиотеках Python и также могут быть использованы при написании скриптов. Для этого нужно скачать нужную библиотеку и импортировать ее.

Классы и методы

Класс включает в себя данные и методы. Класс – данные такого типа данных, который состоит из пакета свойств и средств для работы с ними. Создаются классы с помощью инструкции «class». В его теле может быть блок различных инструкций.

Класс содержит атрибуты, наследуемые объектами, которые написаны на основе этого класса. При вызове класса метод запускается автоматически.

Методы в классе очень похожи на функции, но принимают только один обязательный параметр. Этот параметр необходим для связи с нужным объектом. Методы помогают работать со строками, массивами, списками и т.д. Классы и их методы лучше изучать подробно в отдельной теме.

Массивы

В массивах «array» хранятся однотипные данные, структурированные определенным образом. Они похожи на списки, но ограничены размером и типом входных данных. Для создания нового массива нужно импортировать библиотеку, которая может с ним работать. Ячейки массива имеют одинаковый размер.

На чем сделан python. Смотреть фото На чем сделан python. Смотреть картинку На чем сделан python. Картинка про На чем сделан python. Фото На чем сделан pythonодномерные и многомерные массивы в Python

Массивы бывают одномерными, двумерными, многомерными. Размерность массива можно изменять, поэтому предусмотрена функции, позволяющие измерить его размер. В массиве можно добавлять и удалять элементы.

Модули

Для того, чтобы использовать классы, функции или данные в другой программе в Python можно поместить их в отдельный файл, называемый модулем. Это позволяет повторно использовать ранее написанный код. Модуль можно импортировать при помощи оператора «import» и использовать в других модулях и скриптах.

Некоторые модули уже встроены в интерпретатор по умолчанию. Кроме этого Python 3 имеет библиотеку, содержащую более чем 200 стандартных модулей, с которыми он распространяется.

Ошибки и исключения

Всего в питоне два существует два типа ошибок:

Такую ошибку можно обработать и продолжить работу скрипта дальше. Если обработки исключения не происходит, то программа останавливается и в консоли публикуется какого типа эта ошибка с полным ее описанием и указывается место, где она произошла.

У исключений есть своя иерархия и ее можно посмотреть в документации. При обработке исключений не происходит аварийное завершение приложения. Для того, чтобы обработать исключение, нужно поместить блок в котором возможна ошибка в конструкцию «try … except».

Библиотеки и фреймворки

В Python есть уже встроенные библиотеки, поставляемые вместе с интерпретатором. Они служат для расширения возможностей разработчика при написании программ. Также есть огромное количество внешних библиотек и фреймворков, которые можно подключить и использовать.

Такое количество библиотек дает преимущество, и способствует популярности Python. Например, высокоуровневая библиотека Pandas. Назначение Pandas – это обработка и анализ данных. Она используется в таких профессиях как Data Science и продолжает активно развиваться.

Для того, чтобы жизнь разработчика была легче, разработано множество веб фреймворков. Они позволяют автоматизировать рутинные процессы и задачи. Также фреймворки дают готовую структуру для написания web приложений.

На чем сделан python. Смотреть фото На чем сделан python. Смотреть картинку На чем сделан python. Картинка про На чем сделан python. Фото На чем сделан pythonPython бибиотека Pandas

Одним из самых популярных фреймворков с открытым свободным кодом является Django. С его помощь можно не добавлять разные библиотеки отдельно, а установить большинство стандартных функций одним пакетом. В 2010 году с помощью фреймворка Django был создан Instagram и в 2012 году Facebook купил его за миллиард долларов.

Pyramid является еще одним open-source популярным фреймворком. Он универсальный, и дает возможность работать с большими и малыми приложениями. У него хорошее и понятное руководство или пособие. Pyramid используется в тех случаях, когда не требуется разработки полноценной CMS, а хватает веб приложения. Этот фреймворк позволяет быстро собрать проект.

Что такое виртуальные среды или окружения языка Python?

Иногда при написании приложений возникают трудности, которые связаны с применением разных версий библиотек. Могут различаться требуемые версии, бывает нельзя изменять и обновлять библиотеки, также библиотеки могут быть недоступны.

Для того, чтобы эти проблемы не возникали были придуманы виртуальные среды или окружения. В каждой виртуальной среде можно запускать свое приложение с набором библиотек. Изменение или обновление этих библиотек не влияет на остальные приложения также использующие эти библиотеки.

Существует программное обеспечение, позволяющее формировать виртуальное окружение. Оно бывает встроенное в Python и внешнее. В стандартную библиотеку Python 3 входит модуль venv.

Для чего предназначен и что можно делать на Python

Преимущества и недостатки

Плюсами Python является простота, большое количество встроенных и внешних библиотек и фреймворков, открытый исходный код и большое сообщество программистов, читабельность и удобство кода, гибкость и масштабируемость языка, позволяет уменьшать время на разработку кода.

К минусам можно отнести низкую скорость выполнения в больших проектах, привычка к простому коду, время на дополнительное тестирование кода, связанное с динамической типизацией, не очень удобен для мобильных приложений, несовместимость разных версий Python.

Какие компании используют Python

О популярности Python говорит тот факт, что он используется такими компаниями, как Google в качестве одного из официальных серверных языков.

На чем сделан python. Смотреть фото На чем сделан python. Смотреть картинку На чем сделан python. Картинка про На чем сделан python. Фото На чем сделан pythonТранснациональная корпорация Google

Facebook опубликовал большое количество проектов на Python, Instagram использует веб сервера написанные на Python, Spotify где написано большое количество сервисов на питоне.

Dropbox применяет язык в клиенте для персональных компьютеров, сайт Reddit полностью переписан на Python. И это далеко не все компании, которые используют Python в своей работе.

Что такое Anaconda

Это бесплатный дистрибутив языков Python и R. Anaconda скачивается с официального сайта и устанавливается на компьютер. Платформа применяется для машинного обучения и науке о данных. В состав Anaconda входит большой набор доступных популярных библиотек и пакетов.

Она является виртуальной машиной, которая не связана с операционной системой, и с ее помощью можно программировать на Python. Поддерживается Windows, Linux, Mac OS.

Обучение Python с нуля

Начать обучение питону с нуля можно при помощи книг таких как «Программируем на Python» Майкла Доусона, «Изучаем Python» Марка Лутца и других. Но обычно книги используются как справочная информация или руководство по питону.

На чем сделан python. Смотреть фото На чем сделан python. Смотреть картинку На чем сделан python. Картинка про На чем сделан python. Фото На чем сделан pythonКнига «Программируем на Python» Майкла Доусона

Кроме книг в интернете представлено большое количество сайтов с обучающими материалами. Их можно найти, сделав запрос в поисковике. Есть много бесплатных и платных обучающих видеокурсов, в которых бывают материалы различного качества.

Но более качественно изучать Python лучше в высшем учебном заведении с уже хорошо отработанной методикой преподавания программирования. Хорошему программисту можно быстро перейти с одного языка программирования на другой за короткое время.

Python для начинающих

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *