На что делится 157

Информация о числах

Свойства и характеристики одного числа
Все делители числа, сумма и произведение цифр, двоичный вид, разложение на простые множители.

Свойства пары чисел
Наименьшее общее кратное, наибольший общий делитель, сумма, разность и произведение чисел.

Сейчас изучают числа:

Число 157

Сто пятьдесят семь

RGB(0, 0, 157) или #00009DНаибольшая цифра в числе
(возможное основание)7 (8, восьмеричный вид)Перевод восьмеричной записи в десятичную111Число Фибоначчи?НетНумерологическое значение4
энергия земли, постоянство, однообразие, практичность, упорство, надежность, терпеливость, усердие, стойкостьСинус числа-0.0795485428747221Косинус числа0.9968309933617175Тангенс числа-0.07980143414928566Натуральный логарифм5.056245805348308Десятичный логарифм2.1958996524092336Квадратный корень12.529964086141668Кубический корень5.394690712109591Квадрат числа24649Перевод из секунд2 минуты 37 секундДата по UNIX-времениThu, 01 Jan 1970 00:02:37 GMTMD56c4b761a28b734fe93831e3fb400ce87SHA1097ccd4f03d962011101c1221009e53461a0993fBase64MTU3QR-код числа 157

Описание числа 157

Целое неотрицательное число 157 является простым. 13 — сумма всех цифр данного числа. Делители числа: 1, 157. Их сумма: 158. 157 и 0.006369426751592357 — это обратные числа.
Число 157 представляется произведением: 1 * 157.

Число не является числом Фибоначчи.

Источник

Признаки делимости чисел

На что делится 157. Смотреть фото На что делится 157. Смотреть картинку На что делится 157. Картинка про На что делится 157. Фото На что делится 157

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Что такое «признак делимости»

Признак делимости числа — это такая особенность числа, которая еще до выполнения деления позволяет определить, кратно ли число делителю.

Истинный путь джедая, чтобы зря не пыхтеть над числами, которые в конечном итоге не делятся.

Однозначные, двузначные и трехзначные числа

Однозначное число — это такое число, в составе которого один знак (одна цифра). Девять однозначных натуральных чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9.

Двузначные числа — такие, в составе которых два знака (две цифры). Цифры могут повторяться или быть различными.

Трехзначные числа — числа, в составе которых три знака (три цифры).

Чётные и нечётные числа

Число называют четным тогда, когда оно делится на два без остатка. А нечетные числа — те, что на два без остатка не делятся. Все просто!

Признаки делимости чисел

Признак делимости на 2. Сразу можно сказать, что число делится на 2, если последняя цифра четная.

Признак делимости на 3. Сумма цифр числа должна делиться на 3.

Признаки делимости на 4. Число делится на 4, если две последние цифры — 0 или если они образуют цифру, которая делится на 4.

Признаки делимости на 5. Число делится на 5, если заканчивается на 0 или 5.

Признак делимости на 6. На 6 делятся те числа, которые могут одновременно делится на 2 и на 3.

Признаки делимости на 8. Число делится на 8, если три последних цифры — 0 или если они образуют число, которое делится на 8.

Признак делимости на 9. Число делится на 9, если сумма цифр делится на 9.

Признаки делимости на 10, 100. Числа, которые заканчиваются на 0, 00, 000 делятся на 10, 100, 1000 и так далее.

Источник

Решение №2563 Отношение трёхзначного натурального числа к сумме его цифр – целое число.

Отношение трёхзначного натурального числа к сумме его цифр – целое число.

а) Может ли это отношение быть равным 34?
б) Может ли это отношение быть равным 84?
в) Какое наименьшее значение может принимать это отношение, если первая цифра трёхзначного числа равна 4?

Источник: Ященко ЕГЭ 2022 (36 вар)

а) Да, может. Дано трёхзначное число аbc, которое можно записать как а·100 + b·10 + c·1 и сумма его чисел а + b + c (а,b и с – целые). Их отношение должно быть равно 34:

Заметим, удобные коэффициенты 22 и 11. Что бы обе части уравнения были равны, возьмём b = 0, a = 1, c = 2:

22·1 = 8·0 + 11·2
22 = 22

Значит отношение равно 34, если взять число abc = 102, проверим:

б) Нет, не может. Аналогично пункту а) распишем отношение равное 84:

Переменная а может быть равна от 1 до 9, переменные b и с равны от 0 до 9.
В левой части уравнения можем получить следующие значения:

16·1 = 16
16·2 = 32
16·3 = 48
16·4 = 64
16·5 = 80
16·6 = 96
16·7 = 112
16·8 = 128
16·9 = 144

В правой части уравнения можем получить, запишем по возрастанию:

74·0 + 83·0 = 0
74·1 + 83·0 = 74
74·0 + 83·1 = 83
74·2 + 83·0 = 148
74·1 + 83·1 = 157

Дальше перебирать нет смысла, значения будут больше значений левой части (144).
Ни одно значение левой и правой части не совпадает, значит отношение не может быть равно 84.

в) Аналогично пункту а) запишем отношение с первой цифрой (а) равной 4 и упростим:

Заметим, что бы дробь была наименьшей знаменатель 4 + b + c должен быть наибольшим. Т.к. числитель делится на 9 (3·3 = 9), то знаменатель должен делится хотя бы на 3.
Наибольший знаменатель может быть равен:

4 + 9 + 9 = 22

Но он не делится на 3. Запишем знаменатели которые мы можем получить и которые делятся на 3:

21; 18; 15; 12; 9; 6

1. Если знаменатель равен 21:

То возможны следующие случаи:

2. Если знаменатель равен 18:

То возможны следующие случаи:

Выбираем наименьшее целое значение, отношения трёхзначного числа:

Получается оно при цифрах: а = 4, b = 6, c = 8, и соответственно трёхзначном числе 468.

Ответ: а) да; б) нет; в) 26.

Источник

Простые числа

Простое число — это натуральное число имеющие 2 делителя (делится без остатка): единицу и само это число. При этом единица не является ни простым, ни составным числом. К примеру: 2, 3, 5, 7, 11 и т.д — простые числа.

Числа, которые имеют больше двух делителей называют составными. К примеру: 4, 6, 9 и т.д. Таким образом все натуральные числа, за исключением единицы являются либо простыми, либо составными.

Таблица простых чисел до 500

23571113171923293137
414347535961677173798389
97101103107109113127131137139149151
157163167173179181191193197199211223
227229233239241251257263269271277281
283293307311313317331337347349353359
367373379383389397401409419421431433
439443449457461463467479487491499

Как определить простое число или нет?

Самый простой способ понять простое число или нет, посмотреть таблицу простых чисел, и если оно там присутствует — значит число простое. Как правило, такие таблицы есть в открытом доступе. Но если по каким-то причинам под рукой не оказалось таблицы, можно вручную узнать простое число или нет. Самый популярный способ — это разделить число на простое, и если число делится без остатка, значит оно не простое, а составное.

Пример: определить 489 простое число или нет?

Взаимно простые числа

Взаимно простые числа — это числа, которые не имеют общих делителей, кроме единицы. Подробнее про взаимно простые числа смотрите тут

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *