На рисунке изображен график функции y ax2 чему равен коэффициент a
На рисунке изображен график функции y ax2 чему равен коэффициент a
На рисунке изображены графики функций вида y = ax 2 + bx + c. Установите соответствие между графиками функций и знаками коэффициентов a и c.
1)
2)
3)
В таблице под каждой буквой укажите соответствующий номер.
Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:
Если парабола задана уравнением , то: при то ветви параболы направлены вверх, а при — вниз. Значение c соответствует значению функции в точке x = 0. Следовательно, если график пересекает ось ординат выше оси абсцисс, то значение c положительно, если ниже оси абсцисс — отрицательно.
Таким образом, функциям соответствуют следующие графики: А — 3, Б — 2, В — 1.
На рисунке изображен график функции y ax2 чему равен коэффициент a
На рисунке изображены графики функций вида y = ax 2 + bx + c. Установите соответствие между графиками функций и знаками коэффициентов a и c.
А)
Б)
В)
В таблице под каждой буквой укажите соответствующий номер.
Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:
Если парабола задана уравнением , то: при то ветви параболы направлены вверх, а при — вниз. Значение c соответствует значению функции в точке x = 0. Следовательно, если график пересекает ось ординат выше оси абсцисс, то значение c положительно, если ниже оси абсцисс — отрицательно.
Таким образом, функциям соответствуют следующие графики: А — 3, Б — 2, В — 1.
Как определить a, b и c по графику параболы
Предположим, вам попался график функции \(y=ax^2+bx+c\) и нужно по этому графику определить коэффициенты \(a\), \(b\) и \(c\). В этой статье я расскажу 3 простых способа сделать это.
1 способ – ищем коэффициенты на графике
Данный способ хорош, когда координаты вершины и точка пересечения параболы с осью \(y\) – целые числа. Если это не так, советую использовать способ 2.
Коэффициент \(a\) можно найти с помощью следующих фактов:
— Если \(a>0\), то ветви параболы направленных вверх, если \(a 1\), то график вытянут вверх в \(a\) раз по сравнению с «базовым» графиком (у которого \(a=1\)). Вершина при этом остается на месте. Это наглядно видно по выделенным точкам.
Ищем 3 точки с целыми координатами, принадлежащие параболе.
Пример:
Выписываем координаты этих точек и подставляем в формулу квадратичной функции: \(y=ax^2+bx+c\). Получится система с тремя уравнениями.
Решаем систему.
Пример:
Вычтем из второго уравнения первое:
Подставим \(9a\) вместо \(b\):
Первое и второе уравнения совпали (это нормально для точек, симметричных относительно прямой проходящей через вершину – как точки \(A\) и \(B\) в нашем случае), но нас это не остановит – мы вычтем из второго уравнение третье:
Подставим в первое уравнение \(a\):
Получается квадратичная функция: \(y=-x^2-9x-15\).
Сразу заметим, что по графику можно сразу определить, что \(c=4\). Это сильно облегчит нашу систему – нам хватит 2 точек. Выберем их на параболе: \(C(-1;8)\), \(D(1;2)\) (на самом деле, если присмотреться, то можно заметить, что эти точки выделены жирно на изначальной картинке – это вам подсказка от авторов задачи).
Таким образом имеем систему:
Сложим 2 уравнения:
Подставим во второе уравнение:
Теперь найдем точки пересечения двух функций:
Теперь можно найти ординату второй точки пересечения:
3 способ – используем преобразование графиков функций
Этот способ быстрее первого и более универсальный, в частности он может пригодится и в задачах на другие функции.
Сам способ базируется на следующих идеях:
График \(y=-x^2\) симметричен относительно оси \(x\) графику \(y=x^2\).
– Если \(a>1\) график \(y=ax^2\) получается растяжением графика \(y=x^2\) вдоль оси \(y\) в \(a\) раз.
– Если \(a∈(0;1)\) график \(y=ax^2\) получается сжатием графика \(y=x^2\) вдоль оси \(y\) в \(a\) раз.
– График \(y=a(x+d)^2\) получается сдвигом графика \(y=ax^2\) влево на \(d\) единиц.
— График \(y=a(x-d)^2\) получается сдвигом графика \(y=ax^2\) вправо на \(d\) единиц.
График \(y=a(x+d)^2+e\) получается переносом графика \(y=a(x+d)^2\) на \(e\) единиц вверх.
График \(y=a(x+d)^2-e\) получается переносом графика \(y=a(x+d)^2\) на \(e\) единиц вниз.
Сначала смотрим на её форму и направленность её ветвей. Видим, что форма стандартная, базовая и ветви направлены вверх, поэтому \(a=1\). То есть она получена перемещениями графика базовой параболы \(y=x^2\).
А как надо было перемещать зеленый график чтоб получить оранжевый? Надо сдвинуться вправо на пять единиц и вниз на \(4\).
То есть наша функция выглядит так: \(y=(x-5)^2-4\).
После раскрытия скобок и приведения подобных получаем искомую формулу:
Чтобы найти \(f(6)\), надо сначала узнать формулу функции \(f(x)\). Найдем её:
Парабола растянута на \(2\) и ветви направлены вниз, поэтому \(a=-2\). Иными словами, первоначальной, перемещаемой функцией является функция \(y=-2x^2\).
Парабола смещена на 2 клеточки вправо, поэтому \(y=-2(x-2)^2\).
Парабола поднята на 4 клеточки вверх, поэтому \(y=-2(x-2)^2+4\).
На рисунке изображен график функции y ax2 чему равен коэффициент a
На рисунке изображены графики функций вида y = ax 2 + bx + c. Для каждого графика укажите соответствующее ему значения коэффициента a и дискриминанта D.
4) a 0 уравнение ax 2 + bx + c = 0 имеет два корня, то есть график функции y = ax 2 + bx + c имеет два пересечения с осью абсцисс. Если D Ответ: 1243.
На рисунке изображены графики функций вида y = ax 2 + c. Установите соответствие между графиками и знаками коэффициентов a и c.
1) a > 0, c 0 | 3) a > 0, c > 0 | 4) a Ответ: 4123. На рисунке изображены графики функций вида y = ax 2 + bx + c. Установите соответствие между знаками коэффициентов a и c и графиками функций. Запишите в ответ цифры, расположив их в порядке, соответствующем буквам: Если парабола задана уравнением , то: при то ветви параболы направлены вверх, а при — вниз. Значение c соответствует значению функции в точке x = 0. Следовательно, если график пересекает ось ординат выше оси абсцисс, то значение c положительно, если ниже оси абсцисс — отрицательно. Таким образом, функциям соответствуют следующие графики: А — 1, Б — 3, В — 2. На рисунке изображены графики функций вида y = kx + b. Установите соответствие между графиками функций и знаками коэффициентов k и b. На рисунках изображены графики функций вида y=ax +bx+c. Установите соответствие между знаками коэффициентов a и c и графиками функций. В таблице под каждой буквой укажите соответствующий номер. График функции — парабола. Ветви этой параболы направлены вверх, если и вниз, если . Значение определяет ординату вершины параболы. Если , то вершина параболы находится над осью абсцисс, а если , то ниже. Таким образом, получаем ответ: A — 3, Б — 2, В — 1. На рисунке изображен график функции y ax2 чему равен коэффициент aНа рисунке изображены графики функций вида y = ax 2 + bx + c. Установите соответствие между графиками функций и знаками коэффициентов a и c. 1) 2) 3) В таблице под каждой буквой укажите соответствующий номер. Если парабола задана уравнением , то: при то ветви параболы направлены вверх, а при — вниз. Значение c соответствует значению функции в точке x = 0. Следовательно, если график пересекает ось ординат выше оси абсцисс, то значение c положительно, если ниже оси абсцисс — отрицательно. Таким образом, функциям соответствуют следующие графики: А — 1, Б — 2, В — 3.
|