На стороне прямоугольника у которого и отмечена точка так что треугольник равнобедренный
На стороне прямоугольника у которого и отмечена точка так что треугольник равнобедренный
Площадь треугольника АВС равна 12. На прямой АС взята точка D так, что точка С является серединой отрезка AD. Точка K — середина стороны AB, прямая KD пересекает сторону BC в точке L.
a) Докажите, что BL : LC = 2 : 1.
б) Найдите площадь треугольника BLK.
а) Соединим отрезками точки B и D, A и L. Рассмотрим треугольник АВD. Ясно, что L — точка пересечения медиан этого треугольника. Отсюда BL : LC = 2 : 1, что и требовалось доказать.
б) Как известно, медианы треугольника, пересекаясь в одной точке, делят его на 6 равновеликих треугольников. Учитывая то, что L — точка пересечения медиан а также получим:
Точка D делит сторону AC в отношении AD : DC = 1 : 2.
а) Докажите, что в треугольнике ABD найдётся медиана, равная одной из медиан треугольника DBC.
б) Найдите длину этой медианы в случае, если AB = 7, BC = 8, и AC = 9.
а) Обозначим середины отрезков BA, BD, BC за E, F, G соответственно. Тогда EG — средняя линия треугольника ABC, и точка F лежит на ней. Поскольку FG — средняя линия DBC, то Итак, в четырехугольнике AFGD две стороны равны и параллельны, значит, он параллелограмм и
б) По теореме косинусов в треугольнике ABC имеем откуда
По теореме косинусов в треугольнике DGC имеем откуда
Ответ:
Площадь треугольника ABC равна 10; площадь треугольника AHB, где H — точка пересечения высот, равна 8. На прямой CH взята такая точка K, что треугольник ABK — прямоугольный.
а) Докажите, что
б) Найдите площадь треугольника ABK.
а) Заметим, что поскольку тогда или как перпендикуляры к одной прямой. Значит, Обозначим основания высот треугольника за Тогда точки K, B, A, A1, B1 лежат на окружности с диаметром (из-за прямых углов). заметим, что — основание перпендикуляра из на
Перепишем требуемое утверждение:
Это верно из-за подобия треугольников и по двум углам: действительно,
б) Из пункта а) следует, что
Ответ: