Наименьший положительный корень что это
Нахождение наименьшего положительного корня.
Тема урока: Нахождение наименьшего положительного корня.
— актуализировать знания учащихся по теме «Решение тригонометрических уравнений» и обеспечить их применение при решении задач вариантов ЕНТ;
— рассмотреть общие подходы решения тригонометрических уравнений;
— закрепить навыки решения тригонометрических уравнений;
— познакомить с новыми способами решения тригонометрических уравнений.
— содействовать развитию у учащихся мыслительных операций: умение анализировать, синтезировать, сравнивать;
— формировать и развивать общеучебные умения и навыки: обобщение, поиск способов решения;
— вырабатывать внимание, самостоятельность при работе на уроке;
— способствовать формированию активности и настойчивости, максимальной работоспособности.
а) ; в) ;
б) ; г) .
а) ; в) ;
б) ; г) .
а) ; в) ;
б) ; г) .
а) ; в) ;
III . Работа по отработке умений решать тригонометрические уравнения (работа у доски и в тетрадях )
Найти корни заданного уравнения на заданном промежутке:
а) .
. Однако для решения нашего уравнения данная запись формулы для нахождения корней тригонометрического уравнения не является удобной, поэтому воспользуемся другой записью:
Нетрудно видеть, что простым перебором по параметру n мы сразу получаем все требуемые корни уравнения, т.е.:
Ответ: .
1.Решите уравнение и найдите. Наименьший положительный корень;
2. Найти наименьший положительный корень уравнения sinx + sin 5 x = 0.
3.Найдите наименьший положительный корень уравнения cosx + cos 5 x = 0
А. π/6 В. π/4 Б. π/2 Г. π
4. Из Абитуриента №26 Найдите наименьшее решение уравнения sinx = в интервале [ 500 ;760]
5. Найдите наименьшее решение уравнения cos = в интервале [750;1050] (780 0 )
Тригонометрические уравнения
Тригонометрические уравнения. В составе экзамена по математике в первой части имеется задание связанное с решением уравнения — это простые уравнения, которые решаются за минуты, многие типы можно решить устно. Включают в себя: линейные, квадратные, рациональные, иррациональные, показательные, логарифмические и тригонометрические уравнения.
В этой статье мы рассмотрим тригонометрические уравнения. Их решение отличается и по объёму вычисления и по сложности от остальных задач этой части. Не пугайтесь, под словом «сложность», имеется виду их относительную сложность по сравнению с другими заданиями.
Кроме нахождения самих корней уравнения, необходимо определить наибольший отрицательный, либо наименьший положительный корень. Вероятность того, что вам на экзамене попадёт тригонометрическое уравнение, конечно же, мала.
Их в данной части ЕГЭ менее 7%. Но это не означает, что их нужно оставить без внимания. В части С тоже необходимо решить тригонометрическое уравнение, поэтому хорошо разобраться с методикой решения и понимать теорию просто необходимо.
Понимание раздела «Тригонометрия» в математике во многом определяет ваш успех при решении многих задач. Напоминаю, что ответом является целое число или конечная десятичная дробь. После того, как получите корни уравнения, ОБЯЗАТЕЛЬНО сделайте проверку. Много времени это не займёт, а вас избавит от ошибки.
В будущем мы также рассмотрим и другие уравнения, не пропустите! Вспомним формулы корней тригонометрических уравнений, их необходимо знать:
Знание этих значений необходимо, это «азбука», без которой невозможно будет справиться с множеством заданий. Отлично, если память хорошая, вы легко выучили и запомнили эти значения. Что делать, если этого сделать не получается, в голове путаница, да просто вы именно при сдаче экзамена сбились. Обидно будет потерять бал из-за того, что вы запишите при расчётах неверное значение.
Алгоритм восстановления этих значений прост, он также приведён в теории, полученной вами во втором письме после подписки на рассылку. Если ещё не подписались, сделайте это! В будущем также рассмотрим, как эти значения можно определить по тригонометрической окружности. Не даром её называют «Золотое сердце тригонометрии».
Сразу поясню, во избежание путаницы, что в рассматриваемых ниже уравнениях даны определения арксинуса, арккосинуса, арктангенса с использованием угла х для соответствующих уравнений: cosx=a, sinx=a, tgx=a, где х может быть и выражением. В примерах ниже у нас аргумент задан именно выражением.
Итак, рассмотрим следующие задачи:
Найдите корень уравнения:
В ответе запишите наибольший отрицательный корень.
Решением уравнения cos x = a являются два корня:
Определение: Пусть число a по модулю не превосходит единицы. Арккосинусом числа a называется угол x, лежащий в пределах от 0 до Пи, косинус которого равен a.
Найдём наибольший отрицательный корень. Как это сделать? Подставим различные значения n в полученные корни, вычислим и выберем наибольший отрицательный.
Общая рекомендация для всех подобных задач: для начала берите диапазон n от – 2 до 2. Если требуемое значение выявить не удалось, подставляем следующие значения x: – 3 и 3, – 4 и 4 и так далее.
При n = – 2 х1= 3 (– 2) – 4,5 = – 10,5 х2= 3 (– 2) – 5,5 = – 11,5
При n = – 1 х1= 3 (– 1) – 4,5 = – 7,5 х2= 3 (– 1) – 5,5 = – 8,5
При n = 0 х1= 3∙0 – 4,5 = – 4,5 х2= 3∙0 – 5,5 = – 5,5
При n = 1 х1= 3∙1 – 4,5 = – 1,5 х2= 3∙1 – 5,5 = – 2,5
При n = 2 х1= 3∙2 – 4,5 = 1,5 х2= 3∙2 – 5,5 = 0,5
Получили, что наибольший отрицательный корень равен –1,5
В ответе напишите наименьший положительный корень.
Решением уравнения sin x = a являются два корня:
Либо (он объединяет оба указанные выше):
Определение: Пусть число a по модулю не превосходит единицы. Арксинусом числа a называется угол x, лежащий в пределах от – 90 о до 90 о синус которого равен a.
Выразим x (умножим обе части уравнения на 4 и разделим на Пи):
Найдём наименьший положительный корень. Здесь сразу видно, что при подстановке отрицательных значений n мы получим отрицательные корни. Поэтому будем подставлять n = 0,1,2 …
При n = 0 х = (– 1) 0 + 4∙0 + 3 = 4
При n = 1 х = (– 1) 1 + 4∙1 + 3 = 6
При n = 2 х = (– 1) 2 + 4∙2 + 3 = 12
Проверим при n = –1 х = (–1) –1 + 4∙(–1) + 3 = –2
Значит наименьший положительный корень равен 4.
В ответе напишите наименьший положительный корень.
Решением уравнения tg x = a является корень:
Выразим x (умножим обе части уравнения на 6 и разделим на Пи):
Найдём наименьший положительный корень. Подставим значения n = 1,2,3. Отрицательные значения подставлять нет смысла, так как видно, что получим отрицательные корни:
Таким образом, наименьший положительный корень равен 0,25.
Определение котангенса: Арккотангенсом числа a (a – любое число) называется угол x принадлежащий интервалу (0;П), котангенс которого равен a.
Здесь хочу добавить, что в уравнениях в правой части может стоять отрицательное число, то есть тригонометрическая функция от аргумента может иметь отрицательное значение. Если в ходе решения вы не сможете определить угол, например, для
то данные формулы вам помогут:
Спасибо за внимание, учитесь с удовольствием!
Большая Энциклопедия Нефти и Газа
Наименьший положительный корень
Наименьший положительный корень этого уравнения лежит между О и Vz3, а большие корни стремятся со все более растущим приближением к значению ( s 1 / 2) n, где s есть целое число. Часть, соответствующая бесконечно большому полукругу, очевидно, будет исчезать. [1]
Под р мы понимаем наименьший положительный корень уравнения (2.14); он всегда заключен между нулем и тт. [3]
Если какое-либо из этих уравнений не имеет положительных корней, полагаем его наименьший положительный корень равным оо. [6]
На основании сделанных замечаний заключаем, что левая часть уравнения (5.4.12) положительна во всех точках промежутка ( 0, р ], тогда как в точке р она отрицательна. Следовательно, наименьший положительный корень уравнения (5.4.12) принадлежит интервалу ( р / 1) и других корней данного уравнения на этом интервале нет. [11]
Это уравнение, корни / г 1 которого являются посторонними, легко исследуется. Выявляется, что его наименьший положительный корень принадлежит интервалу ( я / V, Зя / 2), где других корней нет. [12]
Чтобы выбрать тот из них, который отвечает физической картине явления, руководствуемся следующими соображениями. Поэтому физике явления удовлетворяет наименьший положительный корень уравнения (14.16), меньший тт. [13]
Очевидно, это уравнение имеет несколько решений, однако известно, что плотности паровой фазы соответствует наименьший из положительных корней. Поэтому решение задачи заключается в определении наименьшего положительного корня однимГиз методов, приведенных в главе 8, в частности путем отделения корня с точностью б ( при движении по оси аргумента от О с шагом Ар пока расчетное значение давления не превысит экспериментально заданной величины) с последующим уточнением корня методом деления отрезка в некотором отношении. [14]
Очевидно, это уравнение имеет несколько решений, однако известно, что плотности паровой фазы соответствует наименьший из положительных корней. Поэтому решение задачи заключается в определении наименьшего положительного корня одним из методов, приведенных в главе 8, в частности путем отделения корня с точностью б ( при движении по оси аргумента от О с шагом Ар пока расчетное значение давления не превысит экспериментально заданной величины) с последующим уточнением корня методом деления отрезка в некотором отношении. [15]
Модуль числа
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Определение модуля числа
Алгебра дает четкое определение модуля числа. Модуль в математике — это расстояние от начала отсчёта до точки координатной прямой, соответствующей этому числу.
Если мы возьмем некоторое число «a» и изобразим его на координатной прямой точкой A — расстояние от точки A до начала отсчёта (то есть до нуля) длина отрезка OA будет называться модулем числа «a».
Знак модуля: |a| = OA.
Разберем на примере:
Точка В, которая соответствует числу −3, находится на расстоянии 3 единичных отрезков от точки O (то есть от начала отсчёта). Значит, длина отрезка OB равна 3 единицам.
Число 3 (длину отрезка OB) называют модулем числа −3.
Обозначение модуля: |−3| = 3 (читают: «модуль числа минус три равен трём»).
Точка С, которая соответствует числу +4, находится на расстоянии четырех единичных отрезков от начала отсчёта, то есть длина отрезка OС равна четырем единицам.
Число 4 называют модулем числа +4 и обозначают так: |+4| = 4.
Также можно опустить плюс и записать значение, как |4| = 4.
Записывайся на занятия по математике для учеников с 1 по 11 классы.
Онлайн-курсы математики для детей помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.
Свойства модуля числа
Давайте рассмотрим семь основных свойств модуля. Независимо от того, в какой класс перешел ребенок — эти правила пригодятся всегда.
1. Модуль числа — это расстояние, а расстояние не может быть отрицательным. Поэтому и модуль числа не бывает отрицательным:
2. Модуль положительного числа равен самому числу.
3. Модуль отрицательного числа равен противоположному числу.
4. Модуль нуля равен нулю.
5. Противоположные числа имеют равные модули.
6. Модуль произведения равен произведению модулей этих чисел.
Геометрическая интерпретация модуля
Как мы уже знаем, модуль числа — это расстояние от нуля до данного числа. То есть расстояние от точки −5 до нуля равно 5.
Нарисуем числовую прямую и отобразим это на ней.
Эта геометрическая интерпретация используется для решения уравнений и неравенств с модулем. Давайте рассмотрим на примерах.
Решим уравнение: |х| = 5.
Мы видим, что на числовой прямой есть две точки, расстояние от которых до нуля равно 5. Это точки 5 и −5. Значит, уравнение имеет два решения: x = 5 и x = −5.
График функции
График функции равен y = |х|.
Для x > 0 имеем y = x.
Этот график можно использовать при решении уравнений и неравенств.
Корень из квадрата
Оно равно a при а > 0 и −а, при а
Модуль комплексного числа
Чему равен модуль числа в данном случае? Это арифметический квадратный корень из суммы квадратов действительной и мнимой части комплексного числа:
Свойства модуля комплексных чисел
Модуль рационального числа
Как найти модуль рационального числа — это расстояние от начала отсчёта до точки координатной прямой, которая соответствует этому числу.
Модуль рационального числа, примеры:
Модуль вещественных чисел
Модуль противоположного числа, нуля, отрицательного и положительного чисел
Закрепим свойства модуля числа, которые мы рассмотрели выше:
Тригонометрические уравнения
Тригонометрическое уравнение – уравнение, содержащее переменную \(x\) в аргументе одной или нескольких тригонометрических функций: синус, косинус, тангенс, котангенс.
\(\bullet\) Таблица синусов, косинусов, тангенсов и котангенсов:
\[<\large<\begin
\(\bullet\) Основные формулы приведения:
\[\begin
Формулы приведения для тангенса и котангенса легко вывести, зная, что \[\mathrm
\(\bullet\) Четность косинуса и нечетность синуса, тангенса и котангенса:
Решите уравнение \[\sin \alpha=1\]
Решите уравнение \[\sin y=0\]
В ответе укажите целый корень уравнения.
Решите уравнение \[\mathrm
В ответе укажите наименьший положительный корень.
Решите уравнение \[\mathrm
Решите уравнение \[\sin x=\dfrac<\sqrt2>2\]
Данное уравнение равносильно \[x_1=\dfrac<\pi>4+2\pi n\quad <\small<\text<и>>> \quad x_2=\dfrac<3\pi>4+2\pi m,\quad n,m\in\mathbb
Найдите корень уравнения \[\sin<\biggl(\dfrac<\pi> <9>x\biggr)> = \dfrac<1><2>.\] Если уравнение имеет более одного корня, в ответе укажите меньший из его положительных корней.
ОДЗ: \(x\) – произвольное. Решим на ОДЗ:
Решите уравнение \[\mathrm
Данное уравнение равносильно \[\dfrac x3=\dfrac<\pi>4+\pi n\quad\Leftrightarrow\quad x=\dfrac<3\pi>4+3\pi n, \qquad n\in\mathbb
На этапе подготовки к ЕГЭ по математике старшеклассникам полезно повторить, как решать тригонометрические уравнения. Задания из данного раздела вызывают у учащихся определенные сложности, поэтому к ним необходимо отнестись с особым вниманием. Здесь вы можете ознакомиться с теорией, требующейся для выполнения упражнений, а также примерами с решениями тригонометрических уравнений. Обратите внимание, что подобные задания встречаются в аттестационных тестах довольно часто, поэтому пропускать повторение темы не стоит.
Подготовка к экзаменационному испытанию вместе со «Школково» — залог вашего успеха!
С помощью нашего образовательного портала занятия по математике будут проходить легко, и даже одни из самых сложных уравнений не вызовут особых затруднений. На сайте «Школково» представлены все необходимые для успешной сдачи ЕГЭ материалы.
Вся основная информация по теме использования функций (синуса, косинуса, тангенса и котангенса) располагается в разделе «Теоретическая справка», куда вы можете перейти с помощью кнопки «Ознакомиться с полной теорией». Наши преподаватели систематизировали и изложили все необходимые для успешной сдачи материалы в максимально простой и понятной форме. Вы быстро найдете необходимые правило и формулу, и решение тригонометрических уравнений будет даваться максимально легко.
А в разделе «Каталоги» вы сможете попрактиковаться в выполнении заданий. Здесь вы найдете множество уравнений различной сложности, в том числе профильного уровня.
Если какое-либо задание вызвало у вас затруднения, его можно добавить в «Избранное» и вернуться к нему позже для повторения или обсуждения решения с преподавателем.
База «Школково» постоянно обновляется, поэтому недостатка в задачах не будет.