Найти вероятность того что при 10 бросках монеты орел выпадет 3 раза
Бросание монет. Решение задач на нахождение вероятности
Кстати, сразу упомяну, что в контексте подобных задач не существенно, написать «бросают 3 монеты» или «бросают монету 3 раза», результат (в смысле вычисления вероятности) будет один и тот же (так как результаты бросков независимы друг от друга).
1. Классическое определение вероятности
Пример 1. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет ровно один раз.
Пример 2. Дважды бросают симметричную монету. Найти вероятность того, что оба раза выпала одна сторона.
Как видим, все довольно просто. Перейдем к чуть более сложной задаче.
Пример 3. В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел выпадет ровно два раза.
Взяли разгон и переходим к 4 монетам.
Пример 4. Монету бросают 4 раза. Найти вероятность того, что герб выпадет от 2 до 3 раз.
Думаю, к этому времени вы уже поняли суть метода и сможете сами решить задачи, где бросаются 2-3-4 монеты и орел не выпадает ни разу, или решка ровно один раз и т.п.
2. Комбинаторика + классическая вероятность
Пример 4. Монету бросают 4 раза. Найти вероятность того, что герб выпадет от 2 до 3 раз.
Конечно, этот подход кажется сложнее из-за более формального математического описания решения, но гораздо легче масштабируется.
Например, если рассмотреть подобную задачу:
Пример 5. Монету бросают 8 раз. Найти вероятность того, что герб выпадет ровно 4 раза
Ради полноты изложения приведу еще пример задачи, решаемой подобным образом (но если хотите, можете сразу переходить к более простому способу 3).
Пример 6. Монету подбрасывают 6 раз. Найти вероятность того, что гербы выпадут два раза и только подряд, а в остальные разы будут только решки.
Способ 3. Формула Бернулли
А теперь все задачи решаются проще простого, вот глядите!
Пример 1. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет ровно один раз.
Пример 4. Монету бросают 4 раза. Найти вероятность того, что герб выпадет от 2 до 3 раз.
Пример 7. В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел не выпадет ни разу.
Пример 8. Пусть бросают 8 монет. Найти вероятность того, что орел не менее 7 раз.
Таким образом, используя одну простейшую формулу, можно решать множество задач, причем неважно, 3 монеты бросается, или 30, сложность расчетов примерно одинакова. Но, если число бросков становится очень большим, удобнее использовать приближенные формулы Муавра-Лапласа, о которых можно узнать здесь.
Полезные ссылки
Решебник по вероятности
А здесь вы найдете более 200 задач о бросании монет с полными решениями (вводите часть текста для поиска своей задачи):
Независимые испытания и формула Бернулли
Что такое независимые испытания? Практически всё понятно уже из самого названия. Пусть производится несколько испытаний. Если вероятность появления некоего события в каждом из них не зависит от исходов остальных испытаний. При этом под словосочетанием «независимые испытания» часто подразумевают повторные независимые испытания – когда они осуществляются друг за другом.
Простейшие примеры:
– монета подбрасывается 10 раз;
– игральная кость подбрасывается 20 раз.
Совершенно ясно, что вероятность выпадения орла либо решки в любом испытании не зависит от результатов других бросков. Аналогичное утверждение, естественно, справедливо и для кубика.
А вот последовательное извлечение карт из колоды не является серией независимых испытаний – как вы помните, это цепочка зависимых событий. Однако если карту каждый раз возвращать обратно, то ситуация станет «такой, какой надо».
Стрелок совершает 4 выстрела по мишени. Вероятность попадания при каждом выстреле постоянна и равна . Найти вероятность того, что:
а) стрелок попадёт только один раз;
б) стрелок попадёт 2 раза.
Решение: условие сформулировано в общем виде и вероятность попадания в мишень при каждом выстреле считается известной. Она равна (если совсем тяжко, присвойте параметру какое-нибудь конкретное значение, например, ).
Коль скоро, мы знаем , то легко найти вероятность промаха в каждом выстреле:
, то есть, «ку» – это тоже известная нам величина.
а) Рассмотрим событие «Стрелок попадёт только один раз» и обозначим его вероятность через (индексы понимаются как «одно попадание из 4-х»). Данное событие состоит в 4-х несовместных исходах: стрелок попадёт в 1-й или во 2-ой или в 3-й или в 4-й попытке.
По теоремам сложения вероятностей несовместных и умножения вероятностей независимых событий:
Упростим результат с помощью комбинаторной формулы количества сочетаний:
способами можно выбрать попытку, в которой стрелок попал.
И, поскольку в каждом случае имеет место 1 попадание и 3 промаха, то:
– вероятность того, что стрелок попадёт только один раз из 4-х
б) Рассмотрим событие «Стрелок попадёт два раза» и обозначим его вероятность через («два попадания из 4-х»). Здесь вариантов становится больше, попадания возможны:
в 1-й и 2-й попытках
или
в 1-й и 3-й попытках
или
в 1-й и 4-й попытках
или
во 2-й и 3-й попытках
или
во 2-й и 4-й попытках
или
в 3-й и 4-й попытках.
Таким образом, по тем же теоремам сложения и умножения вероятностей:
Рациональнее придерживаться более компактной схемы:
способами (перечислены выше) можно выбрать 2 попытки, в которых произойдут попадания.
И, поскольку в любом исходе ровно 2 попадания и 2 промаха, то:
– вероятность того, что стрелок попадёт 2 раза из 4-х.
Ответ:
Итак – вероятность того, что будет 1 попадание из 4-х, равна , вероятность того, что будет 2 попадания из 4-х, равна … не замечаете ли вы закономерности?
Только что на конкретном примере мы повторили путь Якоба Бернулли, который несколько веков назад вывел формулу, названную позже в его честь:
– Вероятность того, что в независимых испытаниях некоторое случайное событие наступит ровно раз, равна:
, где:
– вероятность появления события в каждом испытании;
– вероятность непоявления события в каждом испытании.
Коэффициент часто называют биномиальным коэффициентом.
Примечание: формула Бернулли справедлива только для тех независимых испытаний,
в которых вероятность события сохраняется постоянной. Но на практике в результате испытаний могут появляться разные события с разными вероятностями – в этом случае работает другая формула. Соответствующие примеры можно найти, например, в типовых расчётах из сборника Чудесенко (Задача 18).
Найти вероятность того, что при 10 бросках монеты орёл выпадет 3 раза.
Решение: сначала немного порассуждаем: всего проводится 10 повторных независимых испытаний. Сколькими способами можно выбрать 3 испытания, в которых выпадет орёл?
способами!
Это что же получается – записывать 120 слагаемых, в каждом из которых 10 множителей? =)
Используем формулу Бернулли: , в данном случае:
– всего испытаний;
– количество испытаний, в которых должен появиться орёл;
– вероятность появления орла в каждом испытании;
– вероятность появления решки в каждом испытании.
Таким образом:
– вероятность того, что при 10 бросках монеты орёл выпадет ровно 3 раза.
Ответ:
Следует отметить, что повторный характер независимых испытаний не является «жизненно важным» (необходимым) условием для применения формулы Бернулли. Рассмотрим похожую задачу (которая, кстати, эквивалентна Задаче 8 урока о классическом определении вероятности):
Найти вероятность того, что при броске 10 монет орёл выпадет на 3-х монетах.
Здесь испытания не повторяются, а скорее, производятся одновременно, но, тем не менее, работает та же самая формула: .
Решение будет отличаться смыслом и некоторыми комментариями, в частности:
способами можно выбрать 3 монеты, на которых выпадет орёл.
– вероятность выпадения орла на каждой из 10-ти монет
Игральную кость бросают 6 раз. Найти вероятность того, что 5 очков:
а) не выпадут (выпадут 0 раз);
б) выпадут 2 раза;
в) выпадут 5 раз.
Результаты округлить до 4-х знаков после запятой.
НАИВЕРОЯТНЕЙШЕЕ число появлений события в независимых испытаниях
Опять же на уровне интуиции в Задаче №3 можно сделать вывод о том, что наивероятнейшее количество появлений «пятёрки» равно единице – ведь всего граней шесть, и при 6 бросках кубика каждая из них должна выпасть в среднем по одному разу. Желающие могут вычислить вероятность и посмотреть, будет ли она больше «конкурирующих» значений и .
Сформулируем строгий критерий: для отыскания наивероятнейшего числа появлений случайного события в независимых испытаниях (с вероятностью в каждом испытании) руководствуются следующим двойным неравенством:
, причём:
1) если значение – дробное, то существует единственное наивероятнейшее число ;
в частности, если – целое, то оно и есть наивероятнейшее число: ;
2) если же – целое, то существуют дванаивероятнейших числа: и .
Наивероятнейшее число появлений «пятёрки» при 6 бросках кубика подпадает под частный случай первого пункта:
В целях закрепления материала решим пару задач:
Вероятность того, что при броске мяча баскетболист попадёт в корзину, равна 0,3. Найти наивероятнейшее число попаданий при 8 бросках и соответствующую вероятность.
А это уже если и не Терминатор, то, как минимум, хладнокровный спортсмен =)
Решение: для оценки наивероятнейшего числа попаданий используем двойное неравенство . В данном случае:
– всего бросков;
– вероятность попадания в корзину при каждом броске;
– вероятность промаха при каждом броске.
Таким образом, наивероятнейшее количество попаданий при 8 бросках находится в следующих пределах:
Поскольку левая граница – дробное число (пункт №1), то существует единственное наивероятнейшее значение, и, очевидно, что оно равно .
Используя формулу Бернулли , вычислим вероятность того, что при 8 бросках будет ровно 2 попадания:
Ответ: – наивероятнейшее количество попаданий при 8 бросках,
– соответствующая вероятность.
Аналогичное задание для самостоятельного решения:
Монета подбрасывает 9 раз. Найти вероятность наивероятнейшего числа появлений орла
Примерный образец решения и ответ в конце урока.
А сейчас весьма любопытная ситуация: предположим, что во всех 9 испытаниях выпал орёл. Это, кстати, не являются каким-то уж сильно невероятным событием: 😉
Вопрос: какая сторона монеты вероятнее всего выпадет в 10-м испытании?
Правильный ответ: вероятности останутся равными! Почему? Причина была сформулирована ещё в самом начале урока: поскольку испытания независимы, то вероятность выпадения орла либо решки в любом испытании не зависит от результатов других испытаний!
Среди изделий, произведенных на станке-автомате, в среднем бывает 60% изделий первого сорта. Какова вероятность того, что среди 6 наудачу отобранных изделий будет:
а) от 2 до 4-х изделий первого сорта;
б) не менее 5 изделий первого сорта;
в) хотя бы одно изделие более низкого сорта.
Вероятность производства первосортного изделия не зависит от качества других выпущенных изделий, поэтому здесь идёт речь о независимых испытаниях. Старайтесь не пренебрегать анализом условия, а то может статься – события-то зависимые или задача вообще о другом.
Решение: вероятность зашифрована под проценты, которые, напоминаю, нужно разделить на сто: – вероятность того, что выбранное изделие будет 1-го сорта.
Тогда: – вероятность того, что оно не будет первосортным.
а) Событие «Среди 6 наудачу отобранных изделий будет от 2 до 4-х изделий первого сорта» состоит в трёх несовместных исходах:
среди изделий будет 2 первосортных или 3 первосортных или 4 первосортных.
С исходами удобнее разделаться по отдельности. Трижды используем формулу Бернулли :
По теореме сложения вероятностей несовместных событий:
– вероятность того, что среди 6 наудачу отобранных изделий будет от 2 до 4-х изделий первого сорта.
Решение можно было записать и «одной строкой», что мы, впрочем, сделаем в следующем пункте:
б) Событие «Среди 6 наудачу отобранных изделий будет не менее 5 изделий первого сорта» состоит в 2-х несовместных исходах: первосортных изделий будет пять или шесть.
По теореме сложения вероятностей несовместных событий:
– искомая вероятность.
в) Вероятность того, что «Среди 6 наудачу отобранных изделий будет хотя бы одно изделие более низкого сорта» удобно найти черезвероятность противоположного события («Все изделия будут первосортными»), которая уже известна:
– вероятность того, что среди шести отобранных изделий окажется хотя бы одно низкосортное.
Ответ:
Вводим исходные данные и получаем:
– вероятность того, что все изделия окажутся более низкого сорта;
– вероятность того, что среди 6 изделий будет только одно первосортное.
Проверка:
,
что и требовалось проверить.
Небольшое задание для самостоятельного решения:
Производится 8 выстрелов по цели, в каждом из которых вероятность попадания равна 0,1. Для разрушения цели требуется хотя бы два попадания. Найти вероятность того, что цель будет разрушена
Для нормальной работы вычислительного центра необходима безотказная работа в течение дня, как минимум, 5 компьютеров. Сколько компьютеров нужно установить, чтобы с вероятностью, не меньшей обеспечить нормальную работу центра, если вероятность отказа компьютера в течение дня равна 0,05?
Решение: из условия легко найти, что вероятность безотказной работы любого компьютера в течение дня составляет . Однако сам вопрос поставлен нетривиально – сколько компьютеров нужно установить? Иными словами, в формуле Бернулли нам не известно значение «эн».
Поскольку для нормальной работы центра необходима безотказная работа, как минимум, 5 компьютеров, то может быть пяти и хватит?
1) Если в вычислительном центре установить компьютеров, то в течение дня безотказно должны работать они все. По формуле Бернулли:
Но по условию нормальную работу центра нужно обеспечить с вероятностью, не меньшей, чем ! А полученная нами вероятность безотказной работы всех пяти компьютеров – заметно меньше. Значит, необходимо увеличить количество машин:
2) Предположим, что в вычислительном центре установлено компьютеров. Тогда для нормальной его работы в течение дня безотказно должны работать 5 или 6 компьютеров.
По теореме сложения вероятностей несовместных событий:
– вероятность того, что в течение дня безотказно будут работать, как минимум, 5 компьютеров из шести.
Данное значение нас тоже не устроит, так как оно меньше требуемой надёжности работы вычислительного центра:
Таким образом, шести компьютеров тоже не достаточно. Добавляем ещё один:
3) Пусть в вычислительном центре компьютеров. Тогда безотказно должны работать 5, 6 или 7 компьютеров. Используя формулу Бернулли и теорему сложения вероятностей несовместных событий, найдём вероятность того, что в течение дня безотказно будут работать, как минимум, 5 компьютеров из семи:
Ответ: чтобы обеспечить нормальную работу вычислительного центра в течение дня с вероятностью, не меньшей , нужно установить не менее семи компьютеров.
Формула Бернулли очень удобна, но с другой стороны, обладает и рядом недостатков. Так, например, при достаточно больших значениях «эн» и «эм» её применение затруднено ввиду огромных значений факториалов. В этом случае используют теоремы Лапласа, которые мы рассмотрим на следующем уроке. Другая распространённая на практике ситуация – когда вероятность некоторого события в отдельно взятом испытании достаточно мала, а количество испытаний велико. Вопрос разрешается с помощью формулы Пуассона.
И, наконец, обещанный секрет:
…Так всё-таки – как правильно играть в азартные игры и лотереи?
Наверное, многие ожидали услышать что-нибудь вроде: «Лучше вообще не играть», «Открыть собственное казино», «Организовать лотерею» и т.п.
Ну почему же не играть? Игра – это одно из развлечений, а за развлечения, как известно, нужно… совершенно верно! Поэтому средства, на которые вы играете, следует считать платой за развлечение, но ни в коем случае трагической потерей.
Тем не менее, каждый участник азартной игры хочет выиграть. И выиграть хорошую сумму. Какой тактики (о стратегии речи не идет вообще) выгоднее всего придерживаться в игре с заведомо проигрышным математическим ожиданием, например, в рулетке? Лучше всего сразу поставить все фишки, как вариант, на «красное» либо «чёрное». С вероятностью вы удвоитесь (и быстро, и много!), и если это произойдёт – обязательно потратьте выигрыш на другие развлечения.
Задача 3: Решение: используем формулу Бернулли: , в данной задаче:
– всего испытаний;
– вероятность выпадения «пятёрки» в каждом испытании;
– вероятность того, что «пятёрка» не выпадет (для каждого испытания).
а)
– вероятность того, что в результате 6 бросков кубика «пятёрка» не появится.
б)
– вероятность того, что в 6 испытаниях «пятёрка» выпадет ровно 2 раза.
в)
– вероятность того, что в 6 испытаниях «пятёрка» выпадет ровно 5 раз.
Ответ:
Задача 5: Решение: в данной задаче речь идёт о независимых испытаниях, при этом:
– всего испытаний;
– вероятность выпадения орла в каждом испытании;
– вероятность выпадения решки в каждом испытании.
Найдём наивероятнейшее количество появлений орла:
Так как – целое число, то существуют два наивероятнейших значения:
и
Используя формулу Бернулли, вычислим соответствующие вероятности:
Ответ: 4 и 5;
Задача 7: Решение: используем формулу Бернулли: , в данном случае:
– всего выстрелов;
– вероятность попадания в цель при каждом выстреле;
– вероятность промаха при каждом выстреле.
По теореме сложения вероятностей несовместных событий:
– вероятность того, что цель не будет разрушена (ни одного или 1 попадание).
Найдём вероятность противоположного события:
– вероятность того, что цель будет разрушена (будет хотя бы два попадания)
Ответ:
Относительная частота события
и статистическое определение вероятности
Вероятность наступления события в некотором испытании – есть отношение , где:
– общее число всех равновозможных, элементарных исходов этого испытания, которые образуют полную группу событий;
– количество элементарных исходов, благоприятствующих событию .
– вероятность того, что в результате броска монеты выпадет «орёл»;
– вероятность того, что в результате броска игральной кости выпадет 5 очков;
– вероятность того, что из колоды будет извлечена трефа
Примечание: однако, в отсутствии информации о результате испытания фразу «Вероятность того, что монета упала орлом» (например) всё же нельзя признать некорректной. То есть классическое определение может оценивать вероятность и после реального опыта.
Почему такое возможно? Такое возможно потому, что все элементарные исходы известны и подсчитаны заранее:
орёл и решка – итого 2 элементарных исхода;
1, 2, 3, 4, 5, 6 – 6 элементарных исходов;
6, 7, 8, 9, 10, В, Д, К, Т каждой масти – всего 36 карт.
Пример: Штирлиц пошёл в лес за грибами. Найти вероятность того, что он найдёт подберёзовик.
Краткая суть состоит в следующем: если в городе проживает примерно равное количество мужчин и женщин (которых подсчитать значительно проще), то это ещё не значит, что вероятность встретить на улице мужчину либо женщину равна
Вновь обратим внимание на шаблонные формулировки:
«Стрелок попадает в мишень с вероятностью 0,8»;
«Вероятность изготовления бракованной детали на данном станке составляет 0,05».
Возникает вопрос, откуда взялись эти значения? Примеры не так надуманны, как кажется, и ответ один: данные вероятности могли получиться только на основе проведённых ранее опытов.