Как доказать что число натуральное

Натуральные числа. Ряд натуральных чисел.

История натуральных чисел началась ещё в первобытные времена. Издревле люди считали предметы. Например, в торговле нужен был счет товара или в строительстве счет материала. Да даже в быту тоже приходилось считать вещи, продукты, скот. Сначала числа использовались только для подсчета в жизни, на практике, но в дальнейшем при развитии математики стали частью науки.

Натуральные числа – это числа которые мы используем при счете предметов.

Например: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ….

Нуль не относится к натуральным числам.

Все натуральные числа или назовем множество натуральных чисел обозначается символом N.

Таблица натуральных чисел.

Как доказать что число натуральное. Смотреть фото Как доказать что число натуральное. Смотреть картинку Как доказать что число натуральное. Картинка про Как доказать что число натуральное. Фото Как доказать что число натуральное

Натуральный ряд.

Натуральные числа, записанные подряд в порядке возрастания, образуют натуральный ряд или ряд натуральных чисел.

Свойства натурального ряда:

Пример №1:
Напишите первых 5 натуральных числа.
Решение:
Натуральные числа начинаются с единицы.
1, 2, 3, 4, 5

Пример №2:
Нуль является натуральным числом?
Ответ: нет.

Пример №3:
Какое первое число в натуральном ряду?
Ответ: натуральный ряд начинается с единицы.

Пример №4:
Какое последнее число в натуральном ряде? Назовите самое большое натуральное число?
Ответ: Натуральный ряд начинается с единицы. Каждое следующее число больше предыдущего на единицу, поэтому последнего числа не существует. Самого большого числа нет.

Пример №5:
У единицы в натуральном ряду есть предыдущее число?
Ответ: нет, потому что единица является первым числом в натуральном ряду.

Пример №6:
Назовите следующее число в натуральном ряду за числами: а)5, б)67, в)9998.
Ответ: а)6, б)68, в)9999.

Пример №7:
Сколько чисел находится в натуральном ряду между числами: а)1 и 5, б)14 и 19.
Решение:
а) 1, 2, 3, 4, 5 – три числа находятся между числами 1 и 5.
б) 14, 15, 16, 17, 18, 19 – четыре числа находятся между числами 14 и 19.

Пример №8:
Назовите предыдущее число за числом 11.
Ответ: 10.

Пример №9:
Какие числа применяются при счете предметов?
Ответ: натуральные числа.

Источник

Натуральные числа

Как доказать что число натуральное. Смотреть фото Как доказать что число натуральное. Смотреть картинку Как доказать что число натуральное. Картинка про Как доказать что число натуральное. Фото Как доказать что число натуральное

Определение натурального числа

Натуральные числа — это числа, которые мы используем для подсчета чего-то конкретного, осязаемого.

Вот какие числа называют натуральными: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 и т. д.

Натуральный ряд — последовательность всех натуральных чисел, расположенных в порядке возрастания. Первые сто можно посмотреть в таблице.

Какие операции возможны над натуральными числами

Записывайтесь на курсы обучения математике для учеников с 1 по 11 классы!

Десятичная запись натурального числа

В школе мы проходим тему натуральных чисел в 5 классе, но на самом деле многое нам может быть интуитивно понятно и раньше. Проговорим важные правила.

Мы регулярно используем цифры: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. При записи любого натурального числа можно использовать только эти цифры без каких-либо других символов. Записываем цифры одну за другой в строчку слева направо, используем одну высоту.

Примеры правильной записи натуральных чисел: 208, 567, 24, 1 467, 899 112. Эти примеры показывают нам, что последовательность цифр может быть разной и некоторые даже могут повторяться.

077, 0, 004, 0931 — это примеры неправильной записи натуральных чисел, потому что ноль расположен слева. Число не может начинаться с нуля. Это и есть десятичная запись натурального числа.

Количественный смысл натуральных чисел

Натуральные числа несут в себе количественный смысл, то есть выступают в качестве инструмента для нумерации.

Представим, что перед нами банан 🍌. Мы можем записать, что видим 1 банан. При этом натуральное число 1 читается как «один» или «единица».

Но термин «единица» имеет еще одно значение: то, что можно рассмотреть, как единое целое. Элемент множества можно обозначить единицей. Например, любое дерево из множества деревьев — единица, любой листок из множества листков — единица.

Представим, что перед нами 2 банана 🍌🍌. Натуральное число 2 читается как «два». Далее, по аналогии:

🍌🍌🍌3 предмета («три»)
🍌🍌🍌🍌4 предмета («четыре»)
🍌🍌🍌🍌🍌5 предметов («пять»)
🍌🍌🍌🍌🍌🍌6 предметов («шесть»)
🍌🍌🍌🍌🍌🍌🍌7 предметов («семь»)
🍌🍌🍌🍌🍌🍌🍌🍌8 предметов («восемь»)
🍌🍌🍌🍌🍌🍌🍌🍌🍌9 предметов («девять»)

Основная функция натурального числа — указать количество предметов.

Если запись числа совпадает с цифрой 0, то его называют «ноль». Напомним, что ноль — не натуральное число, но он может обозначать отсутствие. Ноль предметов значит — ни одного.

Однозначные, двузначные и трехзначные натуральные числа

Однозначное натуральное число — это такое число, в составе которого один знак, одна цифра. Девять однозначных натуральных чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9.

Двузначные натуральные числа — те, в составе которых два знака, две цифры. Цифры могут повторяться или быть различными. Например: 88, 53, 70.

Если множество предметов состоит из девяти и еще одного, значит, речь идет об 1 десятке («один десяток») предметов. Если один десяток и еще один, значит, перед нами 2 десятка («два десятка») и так далее.

По сути, двузначное число — это набор однозначных чисел, где одно записывается справа, а другое слева. Число слева показывает количество десятков в составе натурального числа, а число справа — количество единиц. Всего двузначных натуральных чисел — 90.

Трехзначные натуральные числа — числа, в составе которых три знака, три цифры. Например: 666, 389, 702.

Одна сотня — это множество, состоящее из десяти десятков. Сотня и еще одна сотня — 2 сотни. Прибавим еще одну сотню — 3 сотни.

Вот как происходит запись трехзначного числа: натуральные числа записываются одно за другим слева направо.

Крайнее правое однозначное число указывает на количество единиц, следующее — на количество десятков, крайнее левое — на количество сотен. Цифра 0 показывает отсутствие единиц или десятков. Поэтому 506 — это 5 сотен, 0 десятков и 6 единиц.

Точно так же определяются четырехзначные, пятизначные, шестизначные и другие натуральные числа.

Многозначные натуральные числа

Многозначные натуральные числа состоят из двух и более знаков.

1 000 — это множество с десятью сотнями, 1 000 000 состоит из тысячи тысяч, а один миллиард — это тысяча миллионов. Тысяча миллионов, только представьте! То есть мы можем рассмотреть любое многозначное натуральное число как набор однозначных натуральных чисел.

Например, 2 873 206 содержит в себе: 6 единиц, 0 десятков, 2 сотни, 3 тысячи, 7 десятков тысяч, 8 сотен тысяч и 2 миллиона.

Сколько всего натуральных чисел?

Однозначных 9, двузначных 90, трехзначных 900 и т.д.

Свойства натуральных чисел

Об особенностях натуральных чисел мы уже знаем. А теперь подробно расскажем про их свойства:

множество натуральных чиселбесконечно и начинается с единицы (1)
за каждым натуральным числом следует другоеоно больше предыдущего на 1
результат деления натурального числа на единицу (1)само натуральное число: 5 : 1 = 5
результат деления натурального числа самого на себяединица (1): 6 : 6 = 1
переместительный закон сложенияот перестановки мест слагаемых сумма не меняется: 4 + 3 = 3 + 4
сочетательный закон сложениярезультат сложения нескольких слагаемых не зависит от порядка действий: (2 + 3) + 4 = 2 + (3 + 4)
переместительный закон умноженияот перестановки мест множителей произведение не изменится: 4 × 5 = 5 × 4
сочетательный закон умножениярезультат произведения множителей не зависит от порядка действий; можно хоть так, хоть эдак: (6 × 7) × 8 = 6 × (7 × 8)
распределительный закон умножения относительно сложениячтобы умножить сумму на число, нужно каждое слагаемое умножить на это число и полученные результаты сложить: 4 × (5 + 6) = 4 × 5 + 4 × 6
распределительный закон умножения относительно вычитаниячтобы умножить разность на число, можно умножить на это число отдельно уменьшаемое и вычитаемое, а затем из первого произведения вычесть второе: 3 × (4 − 5) = 3 × 4 − 3 × 5
распределительный закон деления относительно сложениячтобы разделить сумму на число, можно разделить на это число каждое слагаемое и сложить полученные результаты: (9 + 8) : 3 = 9 : 3 + 8 : 3
распределительный закон деления относительно вычитаниячтобы разделить разность на число, можно разделить на это число сначала уменьшаемое, а затем вычитаемое, и из первого произведения вычесть второе: (5 − 3) : 2 = 5 : 2 − 3 : 2

Разряды натурального числа и значение разряда

Напомним, что от позиции, на которой стоит цифра в записи числа, зависит ее значение. Так, например, 1 123 содержит в себе: 3 единицы, 2 десятка, 1 сотню, 1 тысячу. При этом можно сформулировать иначе и сказать, что в заданном числе 1 123 цифра 3 располагается в разряде единиц, 2 в разряде десятков, 1 в разряде сотен и 1 служит значением разряда тысяч.

Разряд — это позиция, место расположения цифры в записи натурального числа.

У каждого разряда есть свое название. Слева всегда располагаются старшие разряды, а справа — младшие. Чтобы быстрее запомнить, можно использовать таблицу.

Количество разрядов всегда соответствует количеству знаков в числе. В этой таблице есть названия всех разрядов для числа, которое состоит из 15 знаков. У следующих разрядов также есть названия, но они используются крайне редко.

Низший (младший) разряд многозначного натурального числа — разряд единиц.

Высший (старший) разряд многозначного натурального числа — разряд, соответствующий крайней левой цифре в заданном числе.

Вы наверняка заметили, что в учебниках часто ставят небольшие пробелы при записи многозначных чисел. Так делают, чтобы натуральные числа было удобно читать. А еще — чтобы визуально разделить разные классы чисел.

Класс — это группа разрядов, которая содержит в себе три разряда: единицы, десятки и сотни.

Десятичная система счисления

Люди в разные времена использовали разные методы записи чисел. И каждая система счисления имеет свои правила и особенности.

Десятичная система счисления — самая распространенная система счисления, в которой для записи чисел используют десять знаков: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

В десятичной системе значение одной и той же цифры зависит от ее позиции в записи числа. Например, число 555 состоит из трех одинаковых цифр. В этом числе первая слева цифра означает пять сотен, вторая — пять десятков, а третья — пять единиц. Так как значение цифры зависит от ее позиции, десятичную систему счисления называют позиционной.

Вопрос для самопроверки

Сколько натуральных чисел можно отметить на координатном луче между точками с координатами:

Источник

Натуральное число

Как доказать что число натуральное. Смотреть фото Как доказать что число натуральное. Смотреть картинку Как доказать что число натуральное. Картинка про Как доказать что число натуральное. Фото Как доказать что число натуральное

Как доказать что число натуральное. Смотреть фото Как доказать что число натуральное. Смотреть картинку Как доказать что число натуральное. Картинка про Как доказать что число натуральное. Фото Как доказать что число натуральное

Натуральные числа (естественные числа) — числа, возникающие естественным образом при счёте (как в смысле перечисления, так и в смысле исчисления).

Существуют два подхода к определению натуральных чисел — числа, используемые при:

Отрицательные и нецелые (рациональные, вещественные, …) числа натуральными не являются.

Множество всех натуральных чисел принято обозначать знаком Как доказать что число натуральное. Смотреть фото Как доказать что число натуральное. Смотреть картинку Как доказать что число натуральное. Картинка про Как доказать что число натуральное. Фото Как доказать что число натуральное. Множество натуральных чисел является бесконечным, так как для любого натурального числа найдётся большее его натуральное число.

Содержание

Определение

Аксиомы Пеано

Множество Как доказать что число натуральное. Смотреть фото Как доказать что число натуральное. Смотреть картинку Как доказать что число натуральное. Картинка про Как доказать что число натуральное. Фото Как доказать что число натуральноебудем называть множеством натуральных чисел, если зафиксирован некоторый элемент Как доказать что число натуральное. Смотреть фото Как доказать что число натуральное. Смотреть картинку Как доказать что число натуральное. Картинка про Как доказать что число натуральное. Фото Как доказать что число натуральное(единица) и функция Как доказать что число натуральное. Смотреть фото Как доказать что число натуральное. Смотреть картинку Как доказать что число натуральное. Картинка про Как доказать что число натуральное. Фото Как доказать что число натуральное(функция следования) так, что выполнены следующие условия

Перечисленные аксиомы отражают наше интуитивное представление о «натуральном ряде».

Поэтому, достаточно зафиксировать в качестве Как доказать что число натуральное. Смотреть фото Как доказать что число натуральное. Смотреть картинку Как доказать что число натуральное. Картинка про Как доказать что число натуральное. Фото Как доказать что число натуральноекакую-либо одну конкретную модель множества натуральных чисел, например, ту, что описана ниже.

Теоретико-множественное определение (Определение Фреге-Рассела)

Согласно теории множеств, единственным объектом конструирования любых математических систем является множество.

Таким образом, и натуральные числа вводятся, исходя из понятия множества, по двум правилам:

Числа, заданные таким образом, называются ординальными.

Первые несколько ординальных чисел и соответствующие им натуральные числа:

Ноль как натуральное число

Иногда, в иностранной и переводной литературе, в первой и третьей аксиомах Пеано заменяют Как доказать что число натуральное. Смотреть фото Как доказать что число натуральное. Смотреть картинку Как доказать что число натуральное. Картинка про Как доказать что число натуральное. Фото Как доказать что число натуральноена Как доказать что число натуральное. Смотреть фото Как доказать что число натуральное. Смотреть картинку Как доказать что число натуральное. Картинка про Как доказать что число натуральное. Фото Как доказать что число натуральное. В этом случае ноль считается натуральным числом. При определении через классы равномощных множеств 0 является натуральным числом по определению. Специально отбрасывать его было бы неестественно. Кроме того, это значительно усложнило бы дальнейшее построение и применение теории, так как в большинстве конструкций ноль, как и пустое множество, не является чем-то выделенным. Одним из преимуществ натурального нуля является то, что при этом Как доказать что число натуральное. Смотреть фото Как доказать что число натуральное. Смотреть картинку Как доказать что число натуральное. Картинка про Как доказать что число натуральное. Фото Как доказать что число натуральноеобразует полугруппу с единицей.

В русской литературе обычно ноль исключён из числа натуральных чисел Как доказать что число натуральное. Смотреть фото Как доказать что число натуральное. Смотреть картинку Как доказать что число натуральное. Картинка про Как доказать что число натуральное. Фото Как доказать что число натуральное, а множество натуральных чисел с нулём обозначается как Как доказать что число натуральное. Смотреть фото Как доказать что число натуральное. Смотреть картинку Как доказать что число натуральное. Картинка про Как доказать что число натуральное. Фото Как доказать что число натуральное. Если в определение натуральных чисел включен ноль, то множество натуральных чисел записывается как Как доказать что число натуральное. Смотреть фото Как доказать что число натуральное. Смотреть картинку Как доказать что число натуральное. Картинка про Как доказать что число натуральное. Фото Как доказать что число натуральное, а без нуля как Как доказать что число натуральное. Смотреть фото Как доказать что число натуральное. Смотреть картинку Как доказать что число натуральное. Картинка про Как доказать что число натуральное. Фото Как доказать что число натуральное.

В международной математической литературе, с учётом сказанного выше и во избежание неоднозначностей, множество Как доказать что число натуральное. Смотреть фото Как доказать что число натуральное. Смотреть картинку Как доказать что число натуральное. Картинка про Как доказать что число натуральное. Фото Как доказать что число натуральноеобычно называют множеством положительных целых чисел и обозначают Как доказать что число натуральное. Смотреть фото Как доказать что число натуральное. Смотреть картинку Как доказать что число натуральное. Картинка про Как доказать что число натуральное. Фото Как доказать что число натуральное. Множество Как доказать что число натуральное. Смотреть фото Как доказать что число натуральное. Смотреть картинку Как доказать что число натуральное. Картинка про Как доказать что число натуральное. Фото Как доказать что число натуральноезачастую называют множеством неотрицательных целых чисел и обозначают Как доказать что число натуральное. Смотреть фото Как доказать что число натуральное. Смотреть картинку Как доказать что число натуральное. Картинка про Как доказать что число натуральное. Фото Как доказать что число натуральное.

Операции над натуральными числами

К замкнутым операциям (операциям, не выводящим результат из множества натуральных чисел) над натуральными числами относятся следующие арифметические операции:

Дополнительно рассматривают ещё две операции. С формальной точки зрения они не являются операциями над натуральными числами, так как не определены для всех пар чисел (иногда существуют, иногда нет).

Следует заметить, что именно операции сложения и умножения являются основополагающими. В частности, кольцо целых чисел определяется именно через бинарные операции сложения и умножения.

Теоретико-множественные определения

Воспользуемся определением натуральных чисел как классов эквивалентности конечных множеств. Будем обозначать класс эквивалентности множества A относительно биекций как [A]. Тогда основные арифметические операции определяются следующим образом:

где Как доказать что число натуральное. Смотреть фото Как доказать что число натуральное. Смотреть картинку Как доказать что число натуральное. Картинка про Как доказать что число натуральное. Фото Как доказать что число натуральное— дизъюнктное объединение множеств, Как доказать что число натуральное. Смотреть фото Как доказать что число натуральное. Смотреть картинку Как доказать что число натуральное. Картинка про Как доказать что число натуральное. Фото Как доказать что число натуральное— прямое произведение, Как доказать что число натуральное. Смотреть фото Как доказать что число натуральное. Смотреть картинку Как доказать что число натуральное. Картинка про Как доказать что число натуральное. Фото Как доказать что число натуральное— множество отображений из B в A. Можно показать, что полученные операции на классах введены корректно, то есть не зависят от выбора элементов классов, и совпадают с индуктивными определениями.

Основные свойства

Алгебраическая структура

Сложение превращает множество натуральных чисел в полугруппу с единицей, роль единицы выполняет 0. Умножение также превращает множество натуральных чисел в полугруппу с единицей, при этом единичным элементом является 1. С помощью замыкания относительно операций сложения-вычитания и умножения-деления получаются группы целых чисел Как доказать что число натуральное. Смотреть фото Как доказать что число натуральное. Смотреть картинку Как доказать что число натуральное. Картинка про Как доказать что число натуральное. Фото Как доказать что число натуральноеи рациональных положительных чисел Как доказать что число натуральное. Смотреть фото Как доказать что число натуральное. Смотреть картинку Как доказать что число натуральное. Картинка про Как доказать что число натуральное. Фото Как доказать что число натуральноесоответственно.

Источник

Натуральные числа

Содержание

Определение натуральных чисел [ править ]

Неформальное определение [ править ]

Определение:
Натура́льные чи́сла (англ. natural numbers, естественные числа) — числа, возникающие естественным образом при счёте (как в смысле перечисления, так и в смысле исчисления).

Существуют два подхода к определению натуральных чисел — числа, используемые при:

Отрицательные и нецелые числа натуральными числами не являются.

Формальное определение [ править ]

Определить множество натуральных чисел позволяют аксиомы Пеано (англ. Peano axioms):

Теоретико-множественное определение [ править ]

Согласно теории множеств, единственным объектом конструирования любых математических систем является множество.

Таким образом, и натуральные числа вводятся, исходя из понятия множества, по двум правилам:

Числа, заданные таким образом, называются ординальными.

Первые несколько ординальных чисел и соответствующие им натуральные числа:

Классы эквивалентности этих множеств относительно биекций также обозначают [math]0, 1, 2, \dots.[/math]

Перечисленные аксиомы отражают наше интуитивные представления о «натуральном ряде».

Операции над натуральными числами [ править ]

Сложение [ править ]

Умножение [ править ]

Вычитание [ править ]

Деление чисел с остатком [ править ]

Формула деления с остатком: [math]n = m \cdot k + r,[/math] где [math]n\,[/math] — делимое, [math]m\,[/math] — делитель, [math]k\,[/math] — частное, [math]r\,[/math] — остаток, причем [math]0\leqslant r \lt b [/math]

Основная теорема арифметики [ править ]

Лемма Евклида [ править ]

Основная теорема арифметики [ править ]

Существование. Пусть [math]n[/math] — наименьшее натуральное число, неразложимое в произведение простых чисел. Оно не может быть единицей по формулировке теоремы. Оно не может быть и простым, потому что любое простое число является произведением одного простого числа — себя. Если [math]n[/math] составное, то оно — произведение двух меньших натуральных чисел. Каждое из них можно разложить в произведение простых чисел, значит, [math]n[/math] тоже является произведением простых чисел. Противоречие.

Принцип индукции, существование наименьшего числа в любом множестве натуральных чисел [ править ]

Индукция [ править ]

Формулировка принципа математической индукции:

Верность этого метода доказательства вытекает из так называемой аксиомы индукции, пятой из аксиом Пеано, которые определяют натуральные числа. Рассмотрение аксиом Пеано выходит за рамки этой статьи.

Также существует принцип полной математической индукции. Вот его строгая формулировка:

Существование наименьшего элемента [ править ]

Аксиому индукции можно заменить на аксиому существования минимума, и доказать аксиому индукции как теорему.

Из этой теоремы вытекает следующее утверждение, эквивалентное аксиоме математической индукции, но иногда более удобное при проведении доказательств.

Источник

Делимость чисел. Признаки делимости. Основная теорема арифметики

В этой статье – необходимая теория для решения задачи 18 Профильного ЕГЭ по математике. Но это не все. Знания о числах и их свойствах, признаки делимости и формула деления с остатком могут пригодиться вам при решении многих задач ЕГЭ.
Повторим еще раз, какие бывают числа.

Как доказать что число натуральное. Смотреть фото Как доказать что число натуральное. Смотреть картинку Как доказать что число натуральное. Картинка про Как доказать что число натуральное. Фото Как доказать что число натуральное

Например, при делении 9 на 4 мы получаем частное 2 и остаток 1, то есть 9 = 4∙2 + 1.

Простые числа – те, что делятся только на себя и на единицу. Единица не является ни простым, ни составным числом. Простые числа: 2, 3, 5, 7, 11, 13, 17, 19…

Числа называются взаимно простыми, если они не имеют общих делителей, кроме 1.

Любое натуральное число можно разложить на простые множители.

Например, 72 = 2∙2∙2∙3∙3, а 98 = 2∙7∙7.

Основная теорема арифметики: Любое натуральное число можно представить в виде произведения простых делителей, взятых в натуральных степенях, причем это разложение единственно.

Наименьшее общее кратное двух чисел (НОК) — это наименьшее число, которое делится на оба данных числа.

Наибольший общий делитель двух чисел (НОД) — это наибольшее число, на которое делятся два данных числа.

последняя цифра числа четная;

сумма цифр числа делится на 3;

число заканчивается на 0 или на 5;

сумма цифр числа делится на 9;

последняя цифра числа равна 0;

суммы цифр на четных и нечетных позициях числа равны или их разность кратна 11.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Теорема (О существовании минимума):