Как доказать что параллелограмм выпуклый
Параллелограмм
Параллелограмм — это выпуклый четырехугольник, у которого
две любые стороны равны и параллельны.
На рисунке 1 изображен выпуклый четырехугольник MNPQ, со сторонами MN, PQ, MQ, NP. Чтобы доказать, что это параллелограмм, посмотрим
какие у него стороны. Итак, по рисунку 1 видно, что у этого выпуклого четырехугольника в первую очередь противоположные стороны равны: MN = PQ и NP = MQ.
Но нам этого еще недостаточно,так как равные противоположные стороны могут быть и у прямоугольника. Для того, чтобы можно было окончательно сказать,
что этот выпуклый четырехугольник — параллелограмм, надо во вторую очередь посмотреть параллельны, ли эти стороны. Сторона MN параллельна стороне PQ,
а сторона NP параллельна стороне MQ. Следовательно, у этого выпуклого четырехугольника две стороны равны и параллельны,а это значит, что это параллелограмм.
Докажем признак, который мы использовали для доказательства — о том, что если в четырехугольнике
две любые стороны равны и параллельны, то это параллелограмм.
На рисунке 2 изобразим выпуклый четырехугольник CPED. По условию CP = ED, CP || ED. Докажем, что CPED — параллелограмм.
5) PE || CD, CP || ED и PE = CD, CP = ED, следовательно CPED — параллелограмм, ч.т.д.
Признак доказан.
Кроме признака параллелограмма, который мы сейчас доказали, существует еще несколько признаков,
которые мы рассмотрим и докажем в следующих статьях.
Параллелограмм, его свойства и признаки с примерами решения
Параллелограммом называют четырехугольник, у которого противолежащие стороны попарно параллельны.
На рисунке 16 изображен параллелограмм
Рассмотрим свойства параллелограмма.
1. Сумма двух любых соседних углов параллелограмма равна 180°.
Действительно, углы и параллелограмма (рис. 16) являются внутренними односторонними углами для параллельных прямых и и секущей Поэтому Аналогично это свойство можно доказать для любой другой пары соседних углов параллелограмма.
2. Параллелограмм является выпуклым четырехугольником.
3. В параллелограмме противолежащие стороны равны и противолежащие углы равны.
Доказательство:
Диагональ разбивает параллелограмм на два треугольника и (рис. 17). -их общая сторона, и (как внутренние накрест лежащие углы для каждой из пар параллельных прямых и и и секущей Тогда (по стороне и двум прилежащим углам). Откуда, и (как соответственные элементы равных треугольников). Так как то
4. Периметр параллелограмма
5. Диагонали параллелограмма точкой пересечения делятся пополам.
Доказательство:
Пусть — точка пересечения диагоналей и параллелограмма (рис. 18). (как противолежащие стороны параллелограмма), (как внутренние накрест лежащие углы для параллельных прямых и и секущих и соответственно). Следовательно, (по стороне и двум прилежащим углам). Тогда (как соответственные стороны равных треугольников).
Пример:
Дано: параллелограмм, — биссектриса угла (рис. 19). Найдите:
Решение:
1)
2) (как внутренние накрест лежащие углы для параллельных прямых и и секущей
3) (по условию), тогда Тогда — равнобедренный (по признаку равнобедренного треугольника),
4)
Высотой параллелограмма называют перпендикуляр, проведенный из любой точки стороны параллелограмма к прямой, содержащей противолежащую сторону.
На рисунке 20 — высота параллелограмма,
Из каждой вершины параллелограмма можно провести две высоты. Например, на рисунке 21 и — высоты параллелограмма, проведенные соответственно к сторонам и
Рассмотрим признаки параллелограмма.
Теорема (признаки параллелограмма). Если в четырехугольнике: 1) две стороны параллельны и равны, или 2) противолежащие стороны попарно равны, или 3) диагонали точкой пересечения делятся пополам, или 4) противолежащие углы попарно равны, — то четырехугольник является параллелограммом.
Доказательство:
1) Пусть в четырехугольнике и (рис. 22). Проведем диагональ Рассмотрим и (как внутренние накрест лежащие при параллельных прямых и и секущей — общая сторона, (по условию). Следовательно, (по двум сторонам и углу между ними). Тогда (как соответственные). Но это накрест лежащие углы при пересечении прямых и секущей Поэтому (по признаку параллельности прямых). Следовательно, в четырехугольнике противолежащие стороны попарно параллельны. Поэтому -параллелограмм.
2) Пусть в четырехугольнике и (рис. 22). Проведем диагональ Тогда (по трем сторонам). Поэтому и следовательно, (по признаку параллельности прямых). Аналогично доказываем, что Следовательно, — параллелограмм.
3) Пусть в четырехугольнике диагонали и пересекаются в точке и (рис. 23). (как вертикальные). Поэтому (по двум сторонам и углу между ними). Отсюда Аналогично доказываем, что Принимая во внимание п. 2) этой теоремы, приходим к выводу, что — параллелограмм.
4) Пусть в параллелограмме (рис. 16). Так как то т. е. откуда Но и — внутренние накрест лежащие углы для прямых и и секущей Поэтому
по признаку параллельности прямых). Аналогично доказываем, что Следовательно, — параллелограмм.
Пример:
В четырехугольнике Докажите, что — параллелограмм.
Доказательство:
Пусть — данный четырехугольник (рис. 22). Рассмотрим и — их общая сторона, (по условию). Тогда, (по двум сторонам и углу между ними). Следовательно, Но тогда в четырехугольнике противолежащие стороны попарно равны, поэтому он является параллелограммом.
О некоторых видах четырехугольников (квадраты, прямоугольники, равнобокие и прямоугольные трапеции) знали еще древнеегипетские и вавилонские математики.
Термин «параллелограмм» греческого происхождения, считают, что он был введен Евклидом (около 300 г. до н. э.). Также известно, что еще раньше о параллелограмме и некоторых его свойствах уже знали ученики школы Пифагора («пифагорейцы»).
В «Началах» Евклида доказана следующая теорема: в параллелограмме противолежащие стороны равны и противолежащие углы равны, а диагональ делит его пополам, но не упоминается о том, что точка пересечения диагоналей параллелограмма делит каждую из них пополам.
Евклид также не упоминает ни о прямоугольнике, ни о ромбе.
Полная теория параллелограммов была разработана лишь в конце Средневековья, а в учебниках она появилась в XVII в. Все теоремы и свойства параллелограмма в этих учебниках основывались на аксиоме параллельности Евклида.
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Теоремы параллелограмма
Параллелограмм представляет собой четырехугольник, у которого противоположные стороны попарно параллельны. Это определение уже достаточно, так как остальные свойства параллелограмма следуют из него и доказываются в виде теорем.
Основными свойствами параллелограмма являются:
Докажем сначала теорему о том, что параллелограмм является выпуклым четырехугольником. Многоугольник является выпуклым тогда, когда какая бы его сторона не была продлена до прямой, все остальные стороны многоугольника окажутся по одну сторону от этой прямой.
Пусть дан параллелограмм ABCD, у которого AB противоположная сторона для CD, а BC — противоположная для AD. Тогда из определения параллелограмма следует, что AB || CD, BC || AD.
У параллельных отрезков нет общих точек, они не пересекаются. Это значит, что CD лежит по одну сторону от AB. Поскольку отрезок BC соединяет точку B отрезка AB с точкой C отрезка CD, а отрезок AD соединяет другие точки AB и CD, то отрезки BC и AD также лежат по ту же сторону от прямой AB, где лежит CD. Таким образом, все три стороны — CD, BC, AD — лежат по одну сторону от AB.
Аналогично доказывается, что по отношению к другим сторонам параллелограмма три остальные стороны лежат с одной стороны.
Противоположные стороны и углы равны
Одним из свойств параллелограмма является то, что в параллелограмме противоположные стороны и противоположные углы попарно равны. Например, если дан параллелограмм ABCD, то у него AB = CD, AD = BC, ∠A = ∠C, ∠B = ∠D. Доказывается эта теорема следующим образом.
Параллелограмм является четырехугольником. Значит, у него две диагонали. Так как параллелограмм — это выпуклый четырехугольник, то любая из них делит его на два треугольника. Рассмотрим в параллелограмме ABCD треугольники ABC и ADC, полученные в результате проведения диагонали AC.
У этих треугольников одна сторона общая — AC. Угол BCA равен углу CAD, как вертикальные при параллельных BC и AD. Углы BAC и ACD также равны как вертикальные при параллельных AB и CD. Следовательно, ∆ABC = ∆ADC по двум углам и стороне между ними.
В этих треугольниках стороне AB соответствует сторона CD, а стороне BC соответствует AD. Следовательно, AB = CD и BC = AD.
Таким образом, доказано, что в параллелограмме противоположные стороны и углы равны.
Диагонали делятся пополам
Так как параллелограмм — это выпуклый четырехугольник, то у него две две диагонали, и они пересекаются. Пусть дан параллелограмм ABCD, его диагонали AC и BD пересекаются в точке E. Рассмотрим образованные ими треугольники ABE и CDE.
У этих треугольников стороны AB и CD равны как противоположные стороны параллелограмма. Угол ABE равен углу CDE как накрест лежащие при параллельных прямых AB и CD. По этой же причине ∠BAE = ∠DCE. Значит, ∆ABE = ∆CDE по двум углам и стороне между ними.
Также можно заметить, что углы AEB и CED вертикальные, а следовательно, тоже равны друг другу.
Так как треугольники ABE и CDE равны друг другу, то равны и все их соответствующие элементы. Стороне AE первого треугольника соответствует сторона CE второго, значит, AE = CE. Аналогично BE = DE. Каждая пара равных отрезков составляет диагональ параллелограмма. Таким образом доказано, что диагонали параллелограмма делятся точкой пересечения пополам.
Параллелограмм: свойства и признаки
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).
Определение параллелограмма
Параллелограмм — это четырехугольник, у которого противоположные стороны попарно параллельны. Как выглядит параллелограмм:
Частные случаи параллелограмма: ромб, прямоугольник, квадрат.
Диагонали — отрезки, которые соединяют противоположные вершины.
Свойства диагоналей параллелограмма:
Биссектриса параллелограмма — это отрезок, который соединяет вершину с точкой на одной из двух противоположных сторон и делит угол при вершине пополам.
Свойства биссектрисы параллелограмма:
Как найти площадь параллелограмма:
Периметр параллелограмма — сумма длины и ширины, умноженная на два.
P = 2 × (a + b), где a — ширина, b — высота.
У нас есть отличные дополнительные курсы по математике для учеников с 1 по 11 классы!
Свойства параллелограмма
Геометрическая фигура — это любое множество точек. У каждой фигуры есть свои свойства, которые отличают их между собой и помогают решать задачи по геометрии в 8 классе.
Рассмотрим основные свойства диагоналей и углов параллелограмма, узнаем чему равна сумма углов параллелограмма и другие особенности этой фигуры. Вот они:
А сейчас докажем теорему, которая основана на первых двух свойствах.
Теорема 1. В параллелограмме противоположные стороны и противоположные углы равны.
В любом выпуклом четырехугольнике диагонали пересекаются. Все, что мы знаем о точке их пересечения — это то, что она лежит внутри четырехугольника.
Если мы проведем обе диагонали в параллелограмме, точка пересечения разделит их пополам. Убедимся, так ли это:
Теорема доказана. Наше предположение верно.
Признаки параллелограмма
Признаки параллелограмма помогают распознать эту фигуру среди других четырехугольников. Сформулируем три основных признака.
Первый признак параллелограмма. Если в четырехугольнике две противолежащие стороны равны и параллельны, то этот четырехугольник — параллелограмм.
Докажем 1 признак параллелограмма:
Шаг 1. Пусть в четырехугольнике ABCD:
Чтобы назвать этот четырехугольник параллелограммом, нужно внимательно рассмотреть его стороны.
Сейчас мы видим одну пару параллельных сторон. Нужно доказать, что вторая пара сторон тоже параллельна.
Шаг 2. Проведем диагональ. Получились два треугольника ABC и CDA, которые равны по первому признаку равенства, то есть по по двум сторонам и углу между ними:
Шаг 3. Из равенства треугольников также следует:
Эти углы тоже являются внутренними накрест лежащими для прямых CB и AD. А это как раз и есть признак параллельности прямых. Значит, CB || AD и ABCD — параллелограмм.
Вот так быстро мы доказали первый признак.
Второй признак параллелограмма. Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.
Докажем 2 признак параллелограмма:
Шаг 1. Пусть в четырехугольнике ABCD:
Шаг 2. Проведем диагональ AC и рассмотрим треугольники ABC и CDA:
Из этого следует, что треугольники ABC и CDA равны по третьему признаку, а именно по трем сторонам.
Шаг 3. Из равенства треугольников следует:
А так как эти углы — накрест лежащие при сторонах BC и AD и диагонали AC, значит, стороны BC и AD параллельны.
Эти углы — накрест лежащие при сторонах AB и CD и секущей AC. Поэтому стороны AB и CD тоже параллельны. Значит, четырехугольник ABCD — параллелограмм, ЧТД.
Доказали второй признак.
Третий признак параллелограмма. Если в четырехугольнике диагонали точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.
Докажем 3 признак параллелограмма:
Шаг 1. Если диагонали четырехугольника ABCD делятся пополам точкой O, то треугольник AOB равен треугольнику COD по двум сторонам и углу между ними:
Шаг 2. Из равенства треугольников следует, что CD = AB.
Эти стороны параллельны CD || AB, по равенству накрест лежащих углов: ∠1 = ∠2 (следует из равенства треугольников AOB и COD).
Значит, ABCD является параллелограммом по первому признаку, который мы доказали ранее. Что и требовалось доказать.
Теперь мы знаем свойства параллелограмма и то, что выделяет его среди других четырехугольников — признаки. Так как они совпадают, эти формулировки можно использовать для определения параллелограмма. Но самое распространенное определение все-таки связано с параллельностью противоположных сторон.