Как доказать что прямая лежит в плоскости
Введение в стереометрию. Параллельность
Важные аксиомы стереометрии
1. Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна.
Таким образом, любая плоскость однозначно задается тремя точками, не лежащими на одной прямой: \(\pi=(ABC)\) (рис. 1).
Заметим, что плоскость обычно изображают в виде внутренности параллелограмма. Почему? Посмотрите, например, сбоку на стол. В виде какой фигуры выглядит столешница?
Следствия из аксиом
1. Через прямую и не лежащую на ней точку проходит плоскость, и притом только одна (рис. 4).
2. Через две пересекающиеся прямые проходит плоскость, и притом только одна (рис. 5).
Доказательство
Определения
Две прямые в пространстве параллельны, если они лежат в одной плоскости и не пересекаются.
Следствие 1
Через две параллельные прямые проходит плоскость, и притом только одна.
Теорема 1
Доказательство
Теорема 2
Если одна из двух параллельных прямых пересекает плоскость, то и другая прямая пересекает эту плоскость.
Доказательство
Теорема 3: о параллельности трех прямых
Доказательство
Определение
Существует три вида взаимного расположения прямой и плоскости:
1. прямая имеет с плоскостью две общие точки (то есть лежит в плоскости) — рис. 4;
2. прямая имеет с плоскостью ровно одну общую точку (то есть пересекает плоскость) — рис. 6;
3. прямая не имеет с плоскостью общих точек (то есть параллельна плоскости).
Теорема 4: признак параллельности прямой и плоскости
Доказательство
Следствие 2
Доказательство
Следствие 3
Определение
Существует три типа взаимного расположения плоскостей в пространстве: совпадают (имеют три общие точки, не лежащие на одной прямой), пересекаются (имеют общие точки, лежащие строго на одной прямой), и не имеют общих точек.
Если две плоскости не имеют общих точек, то они называются параллельными плоскостями.
Теорема 5: признак параллельности плоскостей
Если две пересекающиеся прямых из одной плоскости параллельны двум пересекающимся прямым из другой плоскости, то такие плоскости будут параллельны.
Доказательство
Следствие 4
\[\alpha\parallel \beta, \ \alpha\cap \gamma=a, \ \beta\cap\gamma=b \Longrightarrow a\parallel b\]
Следствие 5
Отрезки параллельных прямых, заключенные между параллельными плоскостями, равны:
\[\alpha\parallel \beta, \ a\parallel b \Longrightarrow A_1B_1=A_2B_2\]
Геометрия. 10 класс
Конспект урока
Геометрия, 10 класс
Урок №5. Взаимное расположение прямых в пространстве
Перечень вопросов, рассматриваемых в теме
Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.
Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости.
Два отрезка называются параллельными, если они лежат на паралельных прямых.
Открытый электронный ресурс:
Теоретический материал для самостоятельного изучения
Мы уже знаем, что прямы в пространстве могут располагаться параллельно или пересекаться. Существует еще один вид- скрещивающиеся прямые. С ним мы мимолетно познакомились на предыдущем уроке. А сегодня нам предстоит разобраться с этой темой более подробно.
Определение. Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости. (рис. 1)
Рисунок 1 – скрещивающиеся прямые
На прошлом уроке в качестве наглядного примера нами был приведен куб.
Сегодня предлагаем вам обратить внимание на окружающую вас обстановку и найти в ней скрещивающиеся прямые.
Примеры скрещивающихся прямых вокруг нас:
Одна дорога проходит по эстакаде, а другая под эстакадой
Горизонтальные линии крыши и вертикальные линии стен
Разберем и докажем теорему, которая выражает признак скрещивающихся прямых.
Теорема. Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся (не лежат в одной плоскости).
Доказательство.
Рассмотрим прямую AB лежащую в плоскости и прямую CD, которая пересекает плоскoсть в точке D, не лежащей на прямой AB (рис. 2).
Рисунок 2 – скрещивающиеся прямые АВ и СD
Итак, возможны три случая расположения прямых в пространстве:
Разберем и докажем еще одну теорему о скрещивающихся прямых.
Теорема. Через каждую из двух скрещивающихся прямых проходит плоскость, параллельная другой прямой, и притом только одна.
Доказательство
Рассмотрим скрещивающиеся прямые AB и CD.(рис. 3)
1. Через точку D можно провести прямую DE параллельную AB.
2. Через пересекающиеся прямые CD и DE можно провести плоскость α
3. Так как прямая АB не лежит в этой плоскости и параллельна прямой DE, то она параллельна плоскости.
4. Эта плоскость единственная, так как любая другая плоскость, проходящая через CD, будет пересекаться с DE и AB, которая ей параллельна.
Теорема доказана.
Рисунок 3 – прямые АВ, СD, DЕ
Любая прямая, например ОО1, рассекает плоскость на две полуплоскости. Если лучи ОА и О1А1 параллельны и лежат в одной полуплоскости, то они называются сонаправленными.
Лучи О1А1 и ОА не являются сонаправленными. Они параллельны, но не лежат в одной полуплоскости. (рис. 4)
Рисунок 4 – сонаправленные лучи
Теорема.Если стороны двух углов соответственно сонаправленны, то такие углы равны. (рис. 5)
Доказательство:
при доказательстве ограничимся случаем, когда углы лежат в разных плоскостях.
Отметим на сторонах угла O произвольные точки A и B.
На соответствующих сторонах угла O1 отложим отрезки OA1 и O₁B₁ равные соответственно ОA и OB.
2. В плоскости рассмотрим четырехугольник OAA1O1.
Так как противолежащие стороны OA и O1A1 этого четырехугольника равны и параллельны по условию, то этот четырехугольник– параллелограмм и, следовательно, равны и параллельны стороны AA1 и OO1.
3. В плоскости, аналогично можно доказать, что OBB1O1 параллелограмм, поэтому равны и параллельны стороны ВВ1 и OO1.
4. Если две отрезка AA1 и BB1 равны параллельны третьему отрезку OO1, значит, они равны и параллельны, т. е. АА1||BB1 и AA1 = BB1.
По определению четырехугольник АВВ1А1 – параллелограмм и из этого получаем АВ=А1В1.
5.Из выше построенного и доказанного АВ=А1В1, ОA =O1A1 и OB =O1B1 следует, что треугольники AOB и A1 O1 B1. равны по трем сторонам, и поэтому О= О1.
Рисунок 5 – равные углы с сонаправленными сторонами
Содержание:
Перпендикулярность прямой и плоскости:
Определение. Прямая, пересекающая плоскость, называется перпендикулярной плоскости, если она перпендикулярна каждой прямой, лежащей в этой плоскости.
Если прямая а перпендикулярна плоскости
Представление о части прямой, перпендикулярной плоскости, дает прямая пересечения поверхностей стен комнаты по отношению к плоскости пола. Колонны здания расположены перпендикулярно по отношению к плоскости фундамента.
В дальнейшем понадобится следующая теорема о перпендикулярности двух параллельных прямых третьей прямой.
Теорема 1. Если одна из двух параллельных прямых перпендикулярна третьей прямой, то и другая прямая перпендикулярна этой прямой.
Пусть а и b — параллельные прямые и Докажем, что Возьмем точку О на прямой b и через нее проведем прямую , параллельную прямой с. Тогда угол между прямыми b и с равен углу между пересекающимися прямыми b и Так как то угол между прямыми б и равен углу между прямыми а и с, т. е. равен Отсюда следует, что (рис. 144, а, б).
Теперь докажем две теоремы, в которых устанавливается связь между параллельностью прямых и их перпендикулярностью плоскости.
Теорема 2. Если одна из двух параллельных прямых перпендикулярна плоскости, то и другая прямая перпендикулярна этой плоскости.
Пусть прямые а и параллельны и прямая а перпендикулярна плоскости Докажем, что прямая также перпендикулярна плоскости Рассмотрим произвольную прямую в плоскости (рис. 145, а., б). Так как Из теоремы 1 следует, что Таким образом, прямая перпендикулярна любой прямой, лежащей в плоскости , т. е.
Теорема 3 (о параллельности прямых, перпендикулярных плоскости). Если две прямые перпендикулярны одной плоскости, то они параллельны.
Пусть прямые а и b перпендикулярны плоскости (рис. 146, а). Докажем, что прямые а и b параллельны. Допустим, что прямая b не параллельна прямой а. Через произвольную точку О прямой b проведем прямую параллельную прямой а. По теореме 2 прямая перпендикулярна плоскости а. Рассмотрим плоскость , в которой лежат прямые b и . Пусть — прямая, по которой пересекаются плоскости и (рис. 146, б). Тогда в плоскости через точку О проходят две прямые b и , перпендикулярные прямой I. Но это невозможно, следовательно, наше предположение неверно и
Для установления факта перпендикулярности прямой и плоскости достаточно проверить перпендикулярность прямой только двум пересекающимся прямым, лежащим в этой плоскости. Это вытекает из следующей теоремы.
Признак перпендикулярности прямой и плоскости
Теорема 4 (признак перпендикулярности прямой и плоскости). Если прямая перпендикулярна двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна этой плоскости.
Пусть прямая а перпендикулярна прямым р и q, лежащим в плоскости и пересекающимся в точке О. Докажем, что прямая перпендикулярна плоскости . Для этого нужно доказать, что прямая a перпендикулярна произвольной прямой плоскости.
Рассмотрим первый случай, когда прямая а проходит через точку О. Проведем через точку О прямую параллельную прямой (если прямая проходит через точку О, то в качестве , возьмем прямую ). Отметим на прямой а точки А и В так, чтобы точка О была серединой отрезка АВ, и проведем в плоскости а прямую, пересекающую прямые р, q и I соответственно в точках Р, Q и L. Пусть для определенности точка Q лежит между точками Р и L (рис. 147, а, б).
Заметим, что так как и (указанные треугольники равны по двум катетам). Следовательно, (так как — общая сторона). Из равенства этих треугольников следует, что
Треугольники APL и BPL равны (так как — общая сторона, a ), следовательно, Таким образом, треугольник ABL — равнобедренный, и его медиана OL является высотой, т. е. прямая перпендикулярна прямой а. Так как прямая параллельна прямой то по теореме 1 Прямая а перпендикулярна каждой прямой плоскости значит,
Если прямая а не проходит через точку О, тогда проведем через точку О прямую параллельную прямой а. Тогда по теореме 1 Следовательно, по доказанному в первом случае Теперь по теореме 2 прямая а перпендикулярна плоскости Теорема доказана.
Теорема 5 (о плоскости, проходящей через данную точку и перпендикулярной данной прямой). Через любую точку пространства проходит единственная плоскость, перпендикулярная данной прямой.
I. Докажем существование плоскости.
Пусть а — данная прямая, а точка О — произвольная точка пространства. Докажем, что существует плоскость, проходящая через точку О и перпендикулярная прямой а.
1)Рассмотрим плоскость проходящую через прямую а и точку О, и плоскость проходящую через прямую а (рис. 148, а, б).
2)В плоскости а через точку О проведем прямую перпендикулярную прямой а. Пусть точка Е — точка пересечения прямых а и
3)Через точку Е в плоскости проведем прямую перпендикулярную прямой а.
4)Плоскость проходящая через прямые является искомой. Действительно, прямая а перпендикулярна двум пересекающимся прямым плоскости у, следовательно, она перпендикулярна плоскости
II. Докажем единственность плоскости.
Допустим, что через точку О проходит еще одна плоскость перпендикулярная прямой а. Пусть плоскость пересекает плоскость а по прямой Тогда Следовательно, в плоскости через точку О проходят две прямые перпендикулярные прямой а. Как известно из планиметрии, этого быть не может. Таким образом, наше предположение неверно и плоскость единственная.
Теорема 6 (о прямой, проходящей через данную точку и перпендикулярной данной плоскости). Через любую точку пространства проходит единственная прямая, перпендикулярная данной плоскости.
I.Докажем существование прямой.
Пусть дана плоскость а и точка О — произвольная точка пространства. Докажем, что существует прямая, проходящая через точку О и перпендикулярная плоскости (рис. 149, а, б).
1)Проведем в плоскости некоторую прямую а и рассмотрим плоскость проходящую через точку О и перпендикулярную прямой а.
2)Обозначим буквой b прямую, по которой пересекаются плоскости
3)В плоскости через точку О проведем прямую , перпендикулярную прямой b. Прямая — искомая прямая. Действительно, прямая перпендикулярна двум пересекающимся прямым а и b плоскости a ( по построению и так как ), следовательно, она перпендикулярна плоскости а (см. рис. 149, а, б).
II.Докажем единственность плоскости.
Предположим, что через точку О проходит еще одна прямая перпендикулярная плоскости Тогда по теореме 3 прямые параллельны, что невозможно, так как прямые пересекаются в точке О. Таким образом, наше предположение неверно и через точку О проходит одна прямая, перпендикулярная плоскости
Теорема 7 (о свойстве диагонали прямоугольного параллелепипеда). Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов длин трех его ребер, имеющих общую вершину.
Пусть — прямоугольный параллелепипед (все его грани прямоугольники). Докажем, что
Из условия следует, что Значит, по признаку перпендикулярности прямой плоскости прямая перпендикулярна плоскости, в которой лежит грань ABCD. Отсюда следует, что В прямоугольном треугольнике по теореме Пифагора Кроме того, (так как АС — диагональ прямоугольника ABCD). Следовательно, (рис. 150, а, б, в).
Следствие. Диагонали прямоугольного параллелепипеда равны.
Пример:
Докажите, что если прямая перпендикулярна одной из двух параллельных плоскостей, то эта прямая перпендикулярна и другой плоскости.
Пусть плоскости параллельны, а прямая Докажем, что
Перпендикуляр и наклонная
Пусть точка А не лежит на плоскости Проведем через точку А прямую, перпендикулярную плоскости и обозначим буквой О точку пересечения этой прямой с плоскостью (рис. 163, а). Перпендикуляром., проведенным из точки А к плоскости , называется отрезок АО, точка О называется основанием перпендикуляра. Если АО — перпендикуляр к плоскости а М — произвольная точка этой плоскости, отличная от точки О, то отрезок AM называется наклонной, проведенной из точки А к плоскости а точка М — основанием, наклонной. Отрезок ОМ — ортогональная проекция (или, короче, проекция) наклонной AM на плоскость
Например, если — прямая треугольная призма, то перпендикуляр, проведенный из точки к плоскости ее основания АВС, есть ребро отрезок СB — проекция наклонной на плоскость АБС (рис. 163, б).
Теорема о трех перпендикулярах
Докажем теорему, которая играет важную роль при решении многих задач.
Теорема 1 (о трех перпендикулярах). Прямая, проведенная в плоскости и перпендикулярная проекции наклонной на эту плоскость, перпендикулярна и самой наклонной.
Пусть АО и AM — соответственно перпендикуляр и наклонная к плоскости а — прямая, проведенная в плоскости и перпендикулярная проекции ОМ (рис. 164, а, б). Докажем, что
Прямая а перпендикулярна плоскости ОАМ, так как она перпендикулярна двум пересекающимся прямым OA и ОМ этой плоскости ( по условию, так как ). Следовательно, прямая а перпендикулярна любой прямой, лежащей в плоскости АОМ, т. е.
Теорема 2. Прямая, проведенная в плоскости и перпендикулярная наклонной, перпендикулярна и ее проекции на эту плоскость.
Пусть АО и AM — соответственно перпендикуляр и наклонная, проведенные из точки А к плоскости прямая а лежит в плоскости а и перпендикулярна наклонной AM (см. рис. 164, а, б). Докажем, что прямая а перпендикулярна проекции ОМ. Прямая а перпендикулярна плоскости ОАМ, так как она перпендикулярна двум пересекающимся прямым OA и AM этой плоскости ( по условию, так как ). Отсюда следует, что прямая а перпендикулярна каждой прямой, лежащей в плоскости АОМ, в частности
Пример №1
— куб, точка О — точка пересечения диагоналей грани a F — середина ребра Докажите, что
1) — проекция на плоскость Следовательно, по теореме о трех перпендикулярах
2) (так как OF — средняя линия треугольника ), значит, (рис. 165, а, б).
Теорема 3. Если из одной точки, взятой вне плоскости, проведены к этой плоскости перпендикуляр и две наклонные, то:
1)две наклонные, имеющие равные проекции, равны;
2)из двух наклонных больше та, проекция которой больше.
Пусть АО — перпендикуляр к плоскости АВ и АС — наклонные к этой плоскости (рис. 166, о). По условию следовательно, Из прямоугольных треугольников АОВ и АОС найдем
Значит, из всех расстояний от точки А до различных точек плоскости наименьшим является расстояние до основания О перпендикуляра, проведенного из точки А к плоскости .
Определение. Расстоянием от точки до плоскости называется длина перпендикуляра, проведенного из этой точки к данной плоскости.
Расстояние от точки А до прямой обозначается d (А, ) (читают: «Расстояние от точки А до прямой »).
Пусть — параллельные плоскости. Из любых точек А и Б плоскости проведем к плоскости перпендикуляры (рис. 166, б). Так как то Отрезки параллельных прямых, заключенные между параллельными плоскостями, равны, следовательно, Отсюда следует, что все точки плоскости а находятся на одном и том же расстоянии от плоскости . Аналогично, все точки плоскости находятся на том же расстоянии от плоскости
Определение. Расстоянием между параллельными плоскостями называется расстояние от произвольной точки одной из параллельных плоскостей до другой плоскости.
Расстояние между параллельными плоскостями обозначается d (читают: «Расстояние между плоскостями »).
Аналогично, каждая точка прямой, параллельной некоторой плоскости, находится на одном и том же расстоянии от этой плоскости.
Определение. Расстоянием между прямой и параллельной ей плоскостью называется расстояние от произвольной точки прямой до плоскости.
Расстояние между прямой и параллельной ей плоскостью а обозначается d (, ) (читают: «Расстояние между прямой и плоскостью »).
Если две прямые скрещивающиеся, то через каждую из них проходит единственная плоскость, параллельная другой.
Определение. Расстоянием между скрещивающимися прямыми называется расстояние от одной из скрещивающихся прямых до плоскости, проходящей через другую прямую и параллельной первой прямой.
Расстояние между скрещивающимися прямыми а и b обозначается d (а, b) (читают: « Расстояние между прямыми а и b »).
Например, в прямоугольном параллелепипеде расстояние между параллельными плоскостями, в которых лежат грани равно длине ребра AD, так как AD перпендикулярно каждой из указанных плоскостей. Расстояние от прямой до параллельной ей плоскостиравно длине ребра DC (рис. 166, в).
Пример №2
— куб. Постройте основание перпендикуляра, проведенного из точки к плоскости
Решение:
1)Заметим, что — проекция на плоскость граниследовательно, по теореме о трех перпендикулярах Аналогично, DB — проекция на плоскость грани AJBCD и значит, Таким образом, прямая В,В перпендикулярна двум пересекающимся прямым и АС плоскости следовательно, прямая перпендикулярна плоскости (рис. 167, а).
2)Так как то искомое основание перпендикуляра есть точка пересечения прямой с плоскостью (см. рис. 167, а).
3)Строим точку (рис. 167, б).
4)Точка — искомое основание перпендикуляра (точка X лежит в плоскости так как она лежит на прямой (рис. 167, в)).
Пример №3
Дан куб Найдите расстояние между прямыми если длина ребра куба равна а.
Решение:
1)Рассмотрим плоскость, проходящую через прямую и параллельную прямой Такой плоскостью является плоскость в которой лежит граньследовательно, ) ( рис. 168, а, б).
2)Расстояние между прямыми есть расстояние от любой точки прямой до плоскости а. Отрезок — перпендикуляр, проведенный из точки к плоскости значит, ), следовательно, его длина а равна расстоянию между прямыми Ответ:
Угол между прямой и плоскостью
Ортогональная проекция прямой
Пусть в пространстве даны плоскость и прямая а. Ортогональной проекцией прямой а на плоскость называется проекция этой прямой на плоскость а в случае, если прямая, определяющая направление проектирования, перпендикулярна плоскости Например, если — куб, тогда ортогональной проекцией прямой на плоскость грани является прямая а ортогональная проекция этой прямой на плоскость основания ABCD куба есть прямая RD (рис. 171, а).
Дадим определение угла между прямой и плоскостью, при этом воспользуемся понятием ортогональной проекции прямой на плоскость.
Если прямая перпендикулярна плоскости, то ее ортогональная проекция на эту плоскость есть точка пересечения этой прямой с плоскостью. В этом случае угол между прямой и плоскостью считается равным
Угол между прямой и плоскостью
Рассмотрим понятие угла между прямой и плоскостью.
Определение. Углом между прямой, не перпендикулярной плоскости, и плоскостью называется угол между прямой и ее ортогональной проекцией на данную плоскость.
Теорема. Угол между прямой и плоскостью является наименьшим из всех углов, которые данная прямая образует с прямыми, лежащими в данной плоскости и проходящими через точку пересечения прямой и плоскости.
Пусть прямая а пересекает плоскость в точке О, — ортогональная проекция прямой а на плоскость , b — произвольная прямая, лежащая в плоскости а, проходящая через точку О и не совпадающая с прямой . Обозначим буквой угол между прямыми а и , а буквой — угол между прямыми а и b. Докажем, что (рис. 171, б).
Если прямые а и b не перпендикулярны, то из точки проведем перпендикуляры МА и MB к прямым и b соответственно. Из прямоугольных треугольников МАО и МВО найдем Так как МА
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.