Главная > Учебные материалы > Математика: Планиметрия. Страница 2
1.Параллельность прямых
Теорема: если две прямые параллельны третьей прямой, то они параллельны.
Доказательство. Пусть даны две прямые а и b. Допустим, что они не параллельны между собой. (Рис.1) Тогда они пересекаются в некоторой точке С. Следовательно, через точку С проходят две прямые, параллельные прямой с. А это невозможно согласно аксиоме: через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной. Следовательно, прямые а и b не пересекаются. Они параллельны.
Рис.1 Теорема. Параллельность прямых.
2.Признаки параллельности прямых
Теорема. Если внутренние накрест лежащие углы равны или сумма внутренних односторонних углов равна 180 градусов, то прямые параллельны.
Доказательство. Пусть даны две прямые a и b, которые образуют с секущей АВ внутренние накрест лежащие углы (Рис. 2 а). Допустим, что прямые a и b не параллельны. Тогда они пересекаются в одной точке С. Секущая АВ разбивает плоскость на две полуплоскости. И, следовательно, точка С лежит в одной из них и образует треугольник АВС. Сторона АС принадлежит прямой а. Сторона ВС принадлежит прямой b. (Рис. 2 б)
Рис.2 Теорема. Признаки параллельности прямых.
3.Свойство углов при пересечении параллельных прямых
Теорема. Если две параллельные прямые пересечены третьей прямой, то внутренние накрест лежащие углы равны и сумма внутренних односторонних углов равна 180 градусов.
Доказательство. Пусть a и b параллельные прямые. Прямая с пересекает их в точках А и В. (Рис. 3)
Проведем через точку А прямую а 1 так, чтобы внутренние накрест лежащие углы, образованные между прямыми а 1 и b и секущей с, были равны. Тогда по признаку параллельности прямых они параллельны. А так как согласно аксиоме о единственной параллельной прямой, проходящей через точку не лежащей на данной прямой, такая прямая может быть только одна, то прямые а и а 1 совпадают. А следовательно внутренние накрест лежащие углы, образованные между прямыми а,b и секущей с, равны.
Рис.3 Теорема. Свойство углов при пересечении параллельных прямых.
4.Сумма углов треугольника
Теорема. Сумма углов треугольника равна 180 градусов.
Доказательство. Пусть АВС данный треугольник. Проведем через вершину В прямую BD, параллельную стороне АС (Рис. 4).
Тогда углы α и α’, γ и γ’ равны как внутренние накрест лежащие. А так как прямая BD представляет собой развернутый угол с вершиной угла в точке В, который равен 180°, т.е. α’ + β + γ’ = 180°, то сумма углов треугольника равна также 180°. Таким образом, мы пришли к выводу, что сумма углов треугольника, т.е. α + β + γ = 180°.
Рис.4 Теорема. Сумма углов треугольника.
5.Единственность перпендикуляра к прямой
Теорема. Из любой точки, не лежащей на данной прямой, можно опустить только один перпендикуляр на данную прямую.
Доказательство. Пусть дана прямая а и не лежащая на ней точка А. Отметим на прямой а произвольную точку, например D. И проведем через нее перпендикуляр.(Рис. 5)
Рис.5 Теорема. Единственность перпендикуляра к прямой.
6. Высота, биссектриса и медиана треугольника
Высотой треугольника, проведенной из данной вершины, называется перпендикуляр, опущенный из данной вершины на противолежащую сторону.
Биссектрисой треугольника, проведенной из данной вершины, называется отрезок, соединяющий эту вершину угла и противолежащую сторону, и делящий данный угол пополам.
Медианой треугольника, проведенной из данной вершины, называется отрезок, соединяющий эту вершину и противолежащую сторону, и делящий ее пополам. (Рис.6)
Рис.6 Высота, биссектриса и медиана треугольника.
7. Свойство медианы равнобедренного треугольника
Теорема. В равнобедренном треугольнике медиана, проведенная из вершины угла к основанию, является биссектрисой и высотой.
Доказательство:
Рассмотрим треугольники ABD и BDC. Они равны по третьему признаку равенства треугольников. АВ = ВС по условию, AD = DC, так как BD медиана, а сторона BD у них общая. Следовательно, углы при вершине D равны, а так как они являются смежными, то ∠ADB = ∠CDB = 90°.
Из равенства треугольников ABD и BDC следует равенство углов при вершине В, т.е. ∠AВD = ∠CВD = α.
Отсюда можно сделать вывод, что медиана BD является биссектрисой и высотой.
Даны прямая а и точка С, не лежащая на этой прямой. Необходимо доказать, что через точку С можно провести прямую, параллельную прямой а. (Рис.8)
Доказательство:
Проведем прямую b, параллельную прямой а. Тогда, согласно аксиоме 9, (через точку, не лежащую на данной прямой, можно провести только одну прямую) проведем прямую с через точку С, параллельную прямой b.
Таким образом, получается, что прямая с параллельна прямой b, и прямая a также параллельна прямой b по построению. Следовательно, по теореме о двух прямых, параллельных третьей прямой, имеем, что две прямые a и c параллельны прямой b и, следовательно, они (прямые а и с) параллельны. Т.е. через точку С можно провести прямую, параллельную прямой а.
Пример 2
Даны две параллельные прямые а и b, и секущая с. Докажите, что биссектрисы внутренних накрест лежащих углов, образованных этими прямыми, параллельны (Рис.9)
Доказательство:
Таким образом, так как углы α и β равны, то и углы α/2 и β/2 также равны. А если углы α/2 и β/2 равны, то они являются внутренними накрест лежащими углами, между секущей с и прямыми, на которых лежат лучи d1 и d2, и согласно теореме: признак параллельности прямых, лучи d1 и d2 лежат на параллельных прямых.
Рис.9 Задача. Даны две параллельные прямые а и b и секущая с.
Пример 3
Один из углов равнобедренного треугольника АВС равен 100° (Рис.10). Найти остальные углы треугольника.
Решение:
Так как сумма углов треугольника составляет 180°, а два угла у равнобедренного треугольника равны, то они не могут равняться 100°. Следовательно, углы при вершинах А и С равны, а угол при вершине В = 100°.
Сумма внешних углов треугольника АВС при вершиах А и В равна 240° (Рис.11). Найдите угол С треугольника АВС.
Решение:
Так как сумма углов α + β + α1 + β1 = 360°, а
α1 + β1 = 240° по условию задачи, то
А так как сумма углов треугольника составляет 180°, то
И следовательно, γ = 60°
Ответ: угол при вершине С = 60°.
Рис.11 Задача. Найти угол треугольника.
Пример 5
В равнобедренном треугольнике АВС с основанием АС проведена биссектриса AD. Угол при вершине В составляет 36° (Рис.12). Докажите, что треугольники CDA и ADB равнобедренные.
Доказательство:
Так как по условию задачи треугольник АВС равнобедренный, то углы при вершинах А и С равны:
α = 72°, а так как AD биссектриса, то ∠BAD = ∠DAC, т.е.
Следовательно, треугольник ADB равнобедренный. Углы при вершинах А и В равны 36°.
Теперь рассмотрим треугольник ADC. Угол λ равен:
Таким образом, треугольник ADC равнобедренный. Углы при вершинах С и D равны 72°.
Статья находится на проверке у методистов Skysmart. Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).
Первый признак равенства треугольников
Конечно, равенство треугольников всегда можно доказать наложением одного треугольника на другой. Но, согласитесь, — это несерьезно. Какое может быть наложение, когда есть три теоремы и можно их доказать.
Давайте рассмотрим три признака равенства треугольников.
Теорема 1. Равенство треугольников по двум сторонам и углу между ними.
Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
При наложении △A1B1C1 на △ABC вершина A1 совмещается с вершиной A, и сторона A1B1 накладывается на сторону AB, AC — на сторону A1C1.
Сторона A1B1 совмещается со стороной AB, вершина B совпадает с вершиной B1, сторона A1С1 совмещается со стороной AС, вершина C совпадает с вершиной C1.
Значит, происходит совмещение вершин В и В1, С и С1.
Второй признак равенства треугольников
Теорема 2. Равенство треугольников по стороне и двум прилежащим к ней углам.
Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Путем наложения △ABC на △A1B1C1, совмещаем вершину А с вершиной A1, вершины В и В1 лежат по одну сторону от А1С1.
Тогда АС совмещается с A1C1, вершина C совпадает с C1, поскольку мы знаем, что АС = A1C1.
AB накладывается на A1B1, поскольку мы знаем, что ∠A = ∠A1.
CB накладывается на C1B1, поскольку мы знаем, что ∠C = ∠C1.
Вершина B совпадает с вершиной B1.
Третий признак равенства треугольников
Теорема 3. Равенство треугольников по трем сторонам.
Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
Приложим △ABC к △A1B1C1 таким образом, чтобы вершина A совпала с вершиной A1, вершина B — с вершиной B1, вершина C и вершина C1 лежат по разные стороны от прямой А1В1.
Кроме трех основных теорем, запомните еще несколько признаков равенства треугольников.
Равны ли треугольники, можно определить не только по сторонам и углам, но и по высоте, медиане и биссектрисе.
Как видите, доказать равенство треугольников можно по множеству признаков и десятком способов. Три признака равенства треугольников — основные. Все остальные способы также стоит запомнить, ведь треугольник — только с виду простая фигура.
Прямая, параллельная стороне треугольника и пересекающая две другие его стороны, отсекает от него треугольник, подобный данному.
Дано : ∆ ABC,
В треугольниках ABC и A1BC1
1) ∠BAC=∠BA1C1 (как соответственные при AC ∥ A1C1 и секущей AB)
Следовательно, треугольники подобны:
Продолжения боковых сторон AB и CD трапеции пересекаются в точке M. Большее основание трапеции AD равно 24 см, МС=5 см, CD=7см. Найдите меньшее основание трапеции.
Дано : ABCD — трапеция, AD ∥ BC,
AD=24 см, BM=12 см, AB=6 см
В треугольнике AMD BC — прямая, параллельная стороне AD и пересекающая две другие его стороны AM и DM. Следовательно, она отсекает от него подобный треугольник:
Из подобия треугольников следует пропорциональность их соответствующих сторон:
Если бы в задаче вместо AD и BC была задействована зависимость между MC и MD, достаточно было бы применить обобщенную теорему Фалеса для угла AMD:
Главная > Учебные материалы > Математика: Планиметрия. Страница 4
1.Параллелограмм
Теорема: если диагонали четырехугольника пересекаются и делятся этой точкой пересечения пополам, то такой четырехугольник называется параллелограммом.
Рис.1 Теорема. Параллелограмм.
Теорема. если четырехугольник является параллелограммом, то его диагонали делятся точкой пересечения пополам.
Доказательство. Пусть дан параллелограмм АВСD. (Рис. 2)
Тогда его стороны AD и BC равны и лежат на параллельных прямых а и b. Если мы проведем секущие с и d так, чтобы прямая с проходила через точку А и С, а прямая d проходила через точку B и D, то угол ОАD будет равен углу ОСВ, а угол ОDА будет равен углу ОВС, как внутренние накрест лежащие. Следовательно, треугольники АОD и ВОС равны по стороне и прилегающим к ней углам. А отсюда следует и равенство сторон этих треугольников. Т.е. АО = ОС, а ВО = ОD. Сумма этих сторон и есть диагонали параллелограмма.
Теорема. диагонали ромба пересекаются под прямым углом и являются биссектрисами его углов.
Рис.3 Теорема. Свойство диагоналей ромба.
Задача
В параллелограмме АВСD проведена биссектриса угла А, которая пересекает сторону ВС в точке Е. Необходимо найти отрезки ВЕ и ЕС, если АВ = 9 см, АD = 14 см (рис.4)
4.Теорема Фалеса
Теорема: параллельные прямые, пересекающие стороны угла и отсекающие на одной его стороне равные отрезки, отсекают равные отрезки и на другой его стороне.
Рис.5 Теорема Фалеса.
5.Средняя линия треугольника
Теорема. средняя линия треугольника, которая соединяет середины двух данных сторон, параллельна третьей его стороне и равна ее половине.
Рис.5 Теорема. Средняя линия треугольника.
6.Трапеция
Теорема. средняя линия трапеции параллельна двум своим основаниям и равна их полусумме.
Рис.6 Теорема. Средняя линия трапеции.
7.Теорема о пропорциональных отрезках
Теорема. параллельные прямые, которые пересекают стороны угла, отсекают от его сторон пропорциональные отрезки.
Доказательство. Пусть дан угол и пересекающие его параллельные прямые. Необходимо доказать, что AС 1 /AС = AВ 1 /AВ (Рис. 7).
Рис.7 Теорема о пропорциональных отрезках.
Т.е. мы пришли к противоречию, так как изначально мы взяли отрезок АС 2 = АС*АВ 1 /АВ.
Рис.8 Теорема о пропорциональных отрезках.
Пример 1
Через точку пересечения диагоналей параллелограмма проведена прямая. Докажите, что ее отрезок, заключенный между параллельными сторонами, делится этой точкой пополам. (Рис.9)
Доказательство:
Пусть ABCD данный параллелограмм. EF данный отрезок, проходящий через точку О пересечения диагоналей.
Рассмотрим треугольники COF и AOE. Сторона АО треугольника АОЕ равна стороне ОС треугольника COF по свойству параллелограмма. Угол при вершине А треугольника АОЕ равен углу при вершине С треугольника COF, как внутренние накрест лежащие углы. Углы при вершине О у обоих треугольников равны как вертикальные.
Отсюда можно сделать вывод, что треугольники АОЕ и COF равны по второму признаку равенства треугольников (по стороне и прилегающим к ней углам). Следовательно, отрезки OF и ОЕ равны.
Рис.9 Задача. Через точку пересечения диагоналей.
Пример 2
Две стороны параллелограмма относятся как 3:4, а его периметр равен 2,8 м. Найдите стороны параллелограмма. (Рис.10)
Решение:
Пусть ABCD данный параллелограмм. Обозначим сторону АВ как 3х, а сторону ВС как 4х. Тогда составим следующее соотношение:
Рис.10 Задача. Две стороны параллелограмма.
Пример 3
В параллелограмме ABCD перпендикуляр, опущенный из вершины В на сторону AD, делит ее пополам. Найдите диагональ BD и стороны параллелограмма, если периметр параллелограмма равен 4 м, а периметр треугольника ABD равен 3 м. (Рис.11)
Решение:
PABCD = 2*(х + 2y) = 4, PABD = 2x +2y = 3
Рис.11 Задача. В параллелограмме ABCD перпендикуляр.
Пример 4
В прямоугольный треугольник, каждый катет которого равен 8 см, вписан прямоугольник, имеющий с треугольником общий угол. Найдите периметр прямоугольника.(Рис.12)
Решение:
Отсюда следует, что FE = AD = 8-х, а BD = х.
Теперь можно составить следующее соотношение:
Периметр прямоугольника ADEF равен 16 см.
Рис.12 Задача. В прямоугольный треугольник.
Пример 5
Докажите, что если у параллелограмма диагонали перпендикулярны, то он является ромбом.(Рис.13)
Доказательство:
Отсюда следует, что эти треугольники равны по второму признаку равенства треугольников (по стороне и прилегающим к ней углам). Сторона АВ = DC и внутренние накрест лежащие углы при них равны. Следовательно, АО = ОС, а ВО = OD.
Теперь рассмотрим треугольники AOD и DOC. Они также равны, но по первому признаку равенства треугольников. Сторона АО = ОС, а сторона OD у них общая. Углы при вершине О равны 90°. Т.е. по двум сторонам и углу между ними.
Следовательно, можно сделать вывод, что сторона AD = DC = AB = BC, т.е. данный параллелограмм является ромбом.
Рис.13 Задача. Докажите, что если у параллелограмма.
Если при пересечении двух прямых третьей внутренние накрест лежащие углы равны, то эти прямые параллельны.
Опустим из точки О перпендикуляр ОМ на прямую АВ и продолжим его до пересечения с прямой СD, АВ ⊥ МN. Докажем, что и СD ⊥ МN.
∠МОL = ∠NОК, как вертикальные углы. Таким образом, сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника; следовательно, ΔМОL = ΔNОК, а отсюда и ∠LМО = ∠КNО, но ∠LМО прямой, значит, и ∠КNО тоже прямой. Таким образом, прямые АВ и СD перпендикулярны к одной и той же прямой МN, следовательно, они параллельны, что и требовалось доказать.
Примечание. Пересечение прямых МО и СD может быть установлено путём поворота треугольника МОL вокруг точки О на 180°.
2. Второй признак параллельности.
Посмотрим, будут ли параллельны прямые АВ и СD, если при пересечении их третьей прямой ЕF равны соответственные углы.
Если при пересечении двух прямых третьей соответственные углы равны, то эти две прямые параллельны.
На этом свойстве основано построение параллельных прямых при помощи линейки и чертёжного треугольника. Выполняется это следующим образом.
Приложим треугольник к линейке так, как это показано на рис. Будем передвигать треугольник так, чтобы одна его сторона скользила по линейке, а по какой-либо другой стороне треугольника проведём несколько прямых. Эти прямые будут параллельны.
3. Третий признак параллельности.
Пусть нам известно, что при пересечении двух прямых АВ и СD третьей прямой сумма каких-нибудь внутренних односторонних углов равна 2d (или 180°). Будут ли в этом случае прямые АВ и СD параллельны (рис.).
Пусть ∠1 и ∠2-внутренние односторонние углы и в сумме составляют 2d.
Но ∠3 + ∠2 = 2d, как углы смежные. Следовательно, ∠1 + ∠2 = ∠3+ ∠2.
Отсюда ∠1 = ∠3, а эти углы внутренние накрест лежащие. Следовательно, АВ || СD.
Если при пересечении двух прямых третьей сумма внутренних односторонних углов равна2d (или 180°), то эти две прямые параллельны.
Признаки параллельных прямых:
1. Если при пересечении двух прямых третьей внутренние накрест лежащие углы равны, то эти прямые параллельны.
2.Если при пересечении двух прямых третьей соответственные углы равны, то эти две прямые параллельны.
3. Если при пересечении двух прямых третьей сумма внутренних односторонних углов равна 180°, то эти две прямые параллельны.
4. Если две прямые параллельны третьей прямой, то они параллельны между собой.
5. Если две прямые перпендикулярны третьей прямой, то они параллельны между собой.
Аксиома параллельности Евклида
Задача. Через точку М, взятую вне прямой АВ, провести прямую, параллельную прямой АВ.
Пользуясь доказанными теоремами о признаках параллельности прямых, можно эту задачу решить различными способами,
Решение. 1-й с п о с о б (черт. 199).
Проводим МN⊥АВ и через точку М проводим СD⊥МN;
получаем СD⊥МN и АВ⊥МN.
На основании теоремы («Если две прямые перпендикулярны к одной и той же прямой, то они параллельны.») заключаем, что СD || АВ.
2-й с п о с о б (черт. 200).
Проводим МК, пересекающую АВ под любым углом α, и через точку М проводим прямую ЕF, образующую с прямой МК угол ЕМК, равный углу α. На основании теоремы (Признаки параллельности прямых) заключаем, что ЕF || АВ.
Решив данную задачу, можем считать доказанным, что через любую точку М, взятую вне прямой АВ, можно провести прямую, ей параллельную. Возникает вопрос, сколько же прямых, параллельных данной прямой и проходящих через данную точку, может существовать?
Практика построений позволяет предполагать, что существует только одна такая прямая, так как при тщательно выполненном чертеже прямые, проведённые различными способами через одну и ту же точку параллельно одной и той же прямой, сливаются.
В теории ответ на поставленный вопрос даёт так называемая аксиома параллельности Евклида; она формулируется так:
Через точку, взятую вне дaнной прямой, можно провести только одну прямую, параллельную этой прямой.
На чертеже 201 через точку О проведена прямая СК, параллельная прямой АВ.
Всякая другая прямая, проходящая через точку О, уже не будет параллельна прямой АВ, а будет её пересекать.
Принятая Евклидом в его «Началах» аксиома, которая утверждает, что на плоскости через точку, взятую вне данной прямой, можно провести только одну прямую, параллельную этой прямой, называется аксиомой параллельности Евклида.
Более двух тысячелетий после Евклида многие учёные-математики пытались доказать это математическое предложение, но всегда их попытки оказывались безуспешными. Только в 1826 г. великий русский учёный, профессор Казанского университета Николай Иванович Лобачевский доказал, что, используя все другие аксиомы Евклида, это математическое предложение доказать нельзя, что оно действительно должно быть принято за аксиому. Н. И. Лобачевский создал новую геометрию, которая в отличие от геометрии Евклида названа геометрией Лобачевского.