Как определить что функция обратима
АЛГОРИТМ СОСТАВЛЕНИЯ ОБРАТНОЙ ФУНКЦИИ.
Лекция по теме «Обратная функция»
ПОНЯТИЕ ОБРАТИМОЙ ФУНКЦИИ.
ДОСТАТОЧНОЕ УСЛОВИЕ ОБРАТИМОСТИ.
На рисунках приведены две функции, у которых области определения и множества значений одинаковы, но одна из функций монотонна, а другая нет (рис.1). Таким образом, функция обладает свойством, не характерным для функции : какое бы число из множества значения функции f(x) ни взять, оно является значением функции только в одной точке . Говорят, что такая функция обратима.
У функции значение можно получить сразу в трех точках . Поэтому такая функция не обратима.
Определение 1. Функцию называют обратимой, если любое свое значение она принимает только в одной точке множества X.
Теорема. Если функция монотонна на множестве X, то она обратима.
Попробуйте самостоятельно определить, какая из предложенных функций обратима?:
а)
б)
а) – функция и возрастает и убывает, значит, она немонотонна, поэтому необратима
б) – функция убывает, значит, она монотонна, поэтому обратима
в) – линейная функция, k=2, то есть функция возрастает, значит, она монотонна, поэтому обратима
г) – квадратичная функция, график – парабола, ветви вниз, то есть функция и возрастает и убывает, значит, она немонотонна, поэтому необратима
Замечание. Монотонность функции, является достаточным условием существования обратной функции. Но оно не является необходимым условием.
Например, мы можем взять немонотонную функцию и рассмотреть ее только на одном промежутке, где она только возрастает или только убывает, тогда условие обратимости будет выполняться. Например, функция при будет возрастающей функцией, поэтому при таких значениях х она обратима.
ПОНЯТИЕ ОБРАТНОЙ ФУНКЦИИ.
АЛГОРИТМ СОСТАВЛЕНИЯ ОБРАТНОЙ ФУНКЦИИ.
Алгоритм составления обратной функции для функции y=f(x), .
Пример 1. Показать, что для функции y=2x-5 существует обратная функция, и найти ее аналитическое выражение.
Решение. Линейная функция y=2x-5 определена на R, возрастает на R и область ее значений есть R. Значит, обратная функция существует на R. Чтобы найти ее аналитическое выражение, решим уравнение относительно х;
Переобозначим переменные, получим искомую обратную функцию
Она определена и возрастает на R.
Пример 2. Показать, что для функции при существует обратная функция, и найти ее аналитическое выражение.
Решение. – квадратичная функция. При функция непрерывна, монотонно возрастает в своей области определения, следовательно, она обратима. Найдем ее:
Так как по условию , то
– обратная функция для
Обратная функция
Что такое обратная функция? Как найти функцию, обратную данной?
Пусть функция y=f(x) определена на множестве D, а E — множество её значений. Обратная функция по отношению к функции y=f(x) — это функция x=g(y), которая определена на множестве E и каждому y∈E ставит в соответствие такое значение x∈D, что f(x)=y.
Таким образом, область определения функции y=f(x) является областью значений обратной к ней функции, а область значений y=f(x) — областью определения обратной функции.
Чтобы найти функцию, обратную данной функции y=f(x), надо :
1) В формулу функции вместо y подставить x, вместо x — y:
2) Из полученного равенства выразить y через x:
Найти функцию, обратную функции y=2x-6.
Функции y=2x-6 и y=0,5x+3 являются взаимно обратными.
Графики прямой и обратной функций симметричны относительно прямой y=x (биссектрисы I и III координатных четвертей).
y=2x-6 и y=0,5x+3 — линейные функции. Графиком линейной функции является прямая. Для построения прямой берём две точки.
Однозначно выразить y через x можно в том случае, когда уравнение x=f(y) имеет единственное решение. Это можно сделать в том случае, если каждое своё значение функция y=f(x) принимает в единственной точке её области определения (такая функция называется обратимой).
Теорема (необходимое и достаточное условие обратимости функции)
Если функция y=f(x) определена и непрерывна на числовом промежутке, то для обратимости функции необходимо и достаточно, чтобы f(x) была строго монотонна.
Причем, если y=f(x) возрастает на промежутке, то и обратная к ней функция также возрастает на этом промежутке; если y=f(x) убывает, то и обратная функция убывает.
Если условие обратимости не выполнено на всей области определения, можно выделить промежуток, где функция только возрастает либо только убывает, и на этом промежутке найти функцию, обратную данной.
Классический пример — функция y=x². На промежутке [0;∞) функция возрастает. Условие обратимости выполнено, следовательно, можем искать обратную функцию.
Так как область определения функции y=x² — промежуток [0;∞), область значений на этом промежутке — также [0;∞), то область определения и область значений обратной функции — также [0;∞).
то есть на промежутке [0;∞) y=√x — функция, обратная к функции y=x². Их графики симметричны относительно биссектрисы I и III координатных четвертей:
В алгебре наиболее известными примерами взаимно обратных функций являются показательная и логарифмическая функция, а также тригонометрические и обратные тригонометрические функции.
1 комментарий
Для физических задач говорить об обратной функции, думаю, можно лишь для безразмерных у и х. При различии их размерностей, значит, и осей их графиков, надо для обратной функции поворачивать и оси.
Тогда лучше говорить о выражении аргумента х в явном виде, не упоминая об обратной функции. Значит, надо функцию у=ах/С+в, где х и С имеют, например, одинаковую размерность (например, кг), представить в виде уравнения ах/С+в-у=0. Из него можно выразить в явном виде у или х. Тогда либо у, либо х надо будет считать функцией с собственной координатной осью с собственной размерностью. При этом ось функции обычно является вертикальной.
Вопрос: можно ли считать выраженные в явном виде функции у и х обратными?
Взаимно обратные функции, основные определения, свойства, графики
Понятие обратной функции
Для чего вообще нам нужно понятие обратных функций?
Нахождение взаимно обратных функций
Обратными по отношению друг к другу будут, например, функции арккосинуса и косинуса.
Разберем несколько задач на нахождение функций, обратных заданным.
Решение
Обе взаимно обратные функции можно отобразить на графике следующим образом:
Возьмем пример, в котором нужно найти логарифмическую функцию, обратную заданной показательной.
Решение
В итоге у нас вышли показательная и логарифмическая функции, которые будут взаимно обратными друг другу на всей области определения.
На графике обе функции будут выглядеть так:
Основные свойства взаимно обратных функций
a r c sin sin 7 π 3 = a r c sin sin 2 π + π 3 = = п о ф о р м у л е п р и в и д е н и я = a r c sin sin π 3 = π 3
Графики взаимно обратных функций
На графике они будут выглядеть следующим образом (случаи с положительным и отрицательным коэффициентом a):
Графики для функций с a > 1 и a 1 будут выглядеть так:
Если нам нужно построить график главной ветви синуса и арксинуса, он будет выглядеть следующим образом (показан выделенной светлой областью):
График главной ветви косинуса и арккосинуса выглядит так:
График главной ветви арктангенса и тангенса:
График главной ветви арккотангенса и котангенса будет таким:
Это все свойства обратных функций, о которых мы хотели бы вам рассказать.
Обратимые и обратные функции
Обратимой называется функция в которой произвольному значению функции соответствует единственное значение аргумента.
Примеры обратимых функций:
Исходная обратимая функция и функция, полученная из нее путем замены x на y и y на x, называются обратными.
Примеры обратных функций:
Однако, если рассматривать данную функцию только на множестве положительных чисел, она будет обратимой:
Графики функций будут симметричны относительно прямой y=x:
Функция y=arcsin(x)
Поскольку функция y=sin(x) является периодической, она не является обратимой.
Для построения функции, обратимой y=sin(x), необходимо взять один из полупериодов функции, обычно это отрезок [-π/2;π/2], на котором функция обратима.
График функции y=arcsin(x):
Например, чтобы найти arcsin(1), можно воспользоваться равенством 1=sin(y). Угол на отрезке [-π/2;π/2], синус которого равняется 1, будет равен 90° или π/2.
Функция y=arccos(x)
Поскольку функция y=cos(x) является периодической, она не является обратимой.
Для построения функции, обратимой y=cos(x), необходимо взять один из полупериодов функции, обычно это отрезок [0;π], на котором функция обратима.
График функции y=arccos(x):
Например, чтобы найти arccos(1), можно воспользоваться равенством 1=cos(y). Угол на отрезке [0;π], косинус которого равняется 1, будет равен 0.
Функция y=arctg(x)
Поскольку функция y=tg(x) является периодической, она не является обратимой.
Для построения функции, обратимой y=tg(x), необходимо рассматривать тангенсоиду на отрезке [-π/2;π/2], на котором функция обратима.
График функции y=arctg(x):
Функция y=arcctg(x)
Поскольку функция y=ctg(x) является периодической, она не является обратимой.
Для построения функции, обратимой y=ctg(x), необходимо рассматривать котангенсоиду на отрезке [0;π], на котором функция обратима.
График функции y=arcctg(x):
Если вам понравился сайт, будем благодарны за его популяризацию 🙂 Расскажите о нас друзьям на форуме, в блоге, сообществе. Это наша кнопочка:
Код кнопки:
Политика конфиденциальности Об авторе
Обратная функция. Урок алгебры в 10-м классе (профильный уровень)
Разделы: Математика
Воспитательная: формировать коммуникативную компетентность.
Оборудование: компьютер, проектор, экран, интерактивная доска SMART Board, раздаточный материал (самостоятельная работа) для работы в группе.
Ход урока.
1. Организационный момент.
Цель – подготовка учащихся к работе на уроке:
— настрой учащихся на работу, организация внимания;
— сообщение темы и цели урока.
2. Актуализация опорных знаний учащихся. Фронтальный опрос.
Для учащихся на интерактивной доске демонстрируется график функции. Учителем формулируется задание – рассмотреть график функции и перечислить изученные свойства функции. Учащиеся перечисляют свойства функции в соответствии со схемой исследования. Учитель справа от графика функции маркером на интерактивной доске записывает названные свойства.
По окончании исследования учитель сообщает, что сегодня на уроке они познакомятся еще с одним свойством функции – обратимостью. Для осмысленного изучения нового материала учитель предлагает ребятам познакомиться с основными вопросами, на которые учащиеся должны дать ответ по окончании урока. Вопросы записаны на обыкновенной доске и в виде раздаточного материала есть у каждого ученика (раздается до урока)
3. Объяснение нового материала.
Цель — формировать знания по новой теме в соответствии с программным материалом; изучить свойство обратимости функции и научить находить функцию, обратную данной; развивать предметную речь.
Учитель проводит изложение материала в соответствии с материалом параграфа. На интерактивной доске учитель проводит сравнение графиков двух функций, у которых области определения и множества значений одинаковы, но одна из функций монотонна, а другая нет, тем самым подводит учащихся под понятия обратимой функции.
Затем учитель формулирует определение обратимой функции и проводит доказательство теоремы об обратимой функции, используя график монотонной функции на интерактивной доске.
Определение 1: Функцию y=f(x), x X называют обратимой, если любое свое значение она принимает только в одной точке множества X.
Учащимся предлагается сделать вывод о связи между областью определения и множеством значений обратных функций.
Для рассмотрения вопроса о способах нахождения функции обратной данной, учитель привлек двух учащихся. Ребята накануне получили задание у учителя самостоятельно разобрать аналитический и графический способы нахождения функции обратной данной. Учитель выступил в роли консультанта при подготовке учащихся к уроку.
Сообщение первого ученика.
Замечание: монотонность функции, является достаточным условием существования обратной функции. Но оно не является необходимым условием.
Учащийся привел примеры различных ситуаций, когда функция не монотонна, но обратима, когда функция не монотонна и не обратима, когда монотонна и обратима
Затем ученик знакомит учащихся со способом нахождения обратной функции, заданной аналитически.
Затем решает два примера на нахождение функции обратной данной.
Пример 1: Показать, что для функции y=5x-3 существует обратная функция, и найти ее аналитическое выражение.
Решение. Линейная функция y=5x-3 определена на R, возрастает на R и область ее значений есть R. Значит, обратная функция существует на R. Чтобы найти ее аналитическое выражение, решим уравнение y=5x-3 относительно х; получим Это и есть искомая обратная функция. Она определена и возрастает на R.
Функция непрерывна, монотонна в своей области определения, следовательно, она обратима. Проанализировав области определения и множества значений функции, делается соответствующий вывод об аналитическом выражении для обратной функции.
Ответ:
Во время объяснения на интерактивной доске выполняется следующее задание:
Построить в одной системе координат график функции и график обратной ей функции. Запишите аналитическое выражение обратной функции.
4. Первичное закрепление нового материала.
Цель – установить правильность и осознанность понимания изученного материала, выявить пробелы первичного осмысления материала, провести их коррекцию.
Учащиеся делятся на пары. Им раздаются листы с заданиями, в которых они и выполняют работу в парах. Время на выполнение работы ограничено (5-7 мин). Одна пара учащихся работает на компьютере, проектор на это время выключается и остальным ребятам не видно, как работают учащиеся на компьютере.
По окончании времени (предполагается, что с работой справилось большинство учащихся) на интерактивной доске (вновь включается проектор) показывается работа учащихся, где и выясняется в ходе проверки правильность выполнения задания в паре. При необходимости учителем проводится коррекционная, разъясняющая работа.
Самостоятельная работа в парах
5. Итог урока. По вопросам, которые были заданы перед началом лекции. Объявление оценок за урок.
Домашнее задание §10. №№ 10.6(а,в) 10.8-10.9(б) 10.12 (б)
Алгебра и начала анализа. 10 класс В 2-х частях для общеобразовательных учреждений (профильный уровень) /А.Г.Мордкович, Л.О.Денищева, Т.А.Корешкова и др.; под ред. А.Г.Мордковича, М: Мнемозина, 2007 год