Мантисса и экспонента что это

Всё, точка, приплыли! Учимся работать с числами с плавающей точкой и разрабатываем альтернативу с фиксированной точностью десятичной дроби

Мантисса и экспонента что это. Смотреть фото Мантисса и экспонента что это. Смотреть картинку Мантисса и экспонента что это. Картинка про Мантисса и экспонента что это. Фото Мантисса и экспонента что это

Сегодня мы поговорим о вещественных числах. Точнее, о представлении их процессором при вычислении дробных величин. Каждый из нас сталкивался с выводом в строку чисел вида 3,4999990123 вместо 3,5 или, того хуже, огромной разницей после вычислений между результатом теоретическим и тем, что получилось в результате выполнения программного кода. Страшной тайны в этом никакой нет, и мы обсудим плюсы и минусы подхода представления чисел с плавающей точкой, рассмотрим альтернативный путь с фиксированной точкой и напишем класс числа десятичной дроби с фиксированной точностью.

Куда уплывает точка

Не секрет, что вещественные числа процессор понимал не всегда. На заре эпохи программирования, до появления первых сопроцессоров вещественные числа не поддерживались на аппаратном уровне и эмулировались алгоритмически с помощью целых чисел, с которыми процессор прекрасно ладил. Так, тип real в старом добром Pascal был прародителем нынешних вещественных чисел, но представлял собой надстройку над целым числом, в котором биты логически интерпретировались как мантисса и экспонента вещественного числа.

Мантисса — это, по сути, число, записанное без точки. Экспонента — это степень, в которую нужно возвести некое число N (как правило, N = 2), чтобы при перемножении на мантиссу получить искомое число (с точностью до разрядности мантиссы). Выглядит это примерно так:

Чтобы избежать неоднозначности, считается, что 1 = 4 503 599 627 370 496 и спокойно вмещает в себя все 32-разрядные целые, давая сбой только на действительно больших 64-разрядных целых (19 десятичных знаков), где погрешность в сотнях единиц уже, как правило, несущественна. Если же нужна большая точность, то мы в данной статье обязательно в этом поможем.

Теперь что касается экспоненты. Это обычное бинарное представление целого числа, в которое нужно возвести 10, чтобы при перемножении на мантиссу в нормализованном виде получить исходное число. Вот только в стандарте вдобавок ввели смещение, которое нужно вычитать из бинарного представления, чтобы получить искомую степень десятки (так называемая biased exponent — смещенная экспонента). Экспонента смещается для упрощения операции сравнения, то есть для одинарной точности берется значение 127, а для двойной 1023. Все это звучит крайне сложно, поэтому многие пропускают главу о типе с плавающей точкой. А зря!

Примерное плаванье

Чтобы стало чуточку понятнее, рассмотрим пример. Закодируем число 640 (= 512 + 128) в бинарном виде как вещественное число одинарной точности:

Задание на дом: разобраться в двоичной записи следующих констант: плюс и минус бесконечность (INF — бесконечность), ноль, минус ноль и число-не-число (NaN — not-a-number).

За буйки не заплывай!

Если для целых чисел нужно учитывать только максимальное и минимальное значение, то для вещественных чисел в представлении с плавающей точкой следует больше внимания обращать не столько на максимальные значения, сколько на разрядность числа.

Другое дело проблема точности. Жалкие 23 бита под мантиссу дают погрешность уже на 8-м знаке после запятой. Для чисел с двойной точностью ситуация не столь плачевная, но и 15 десятичных знаков очень быстро превращаются в проблему, если, например, при обработке данных требуется 6 фиксированных знаков после точки, а числа до точки достаточно большие, под них остается всего лишь 9 знаков. Соответственно, любые многомиллиардные суммы будут давать значительную погрешность в дробной части. При большой интенсивности обработки таких чисел могут пропадать миллиарды евро, просто потому, что они «не поместились», а погрешность дробной части суммировалась и накопила огромный остаток неучтенных данных.

Если бы это была только теория! На практике не должно пропадать даже тысячной доли цента, погрешность всех операций должна быть строго равна нулю. Поэтому для бизнес-логики, как правило, не используют C/C++, а берут C# или Python, где в стандартной библиотеке уже встроен тип Decimal, обрабатывающий десятичные дроби с нулевой погрешностью при указанной точности в десятичных знаках после запятой. Что же делать нам, программистам на C++, если перед нами стоит задача обработать числа очень большой разрядности, при этом не используя высокоуровневые языки программирования? Да то же, что и обычно: заполнить пробел, создав один небольшой тип данных для работы с десятичными дробями высокой точности, аналогичный типам Decimal высокоуровневых библиотек.

Добавим плавающей точке цемента

Пора зафиксировать плавающую точку. Поскольку мы решили избавиться от типа с плавающей точкой из-за проблем с точностью вычислений, нам остаются целочисленные типы, а поскольку нам нужна максимальная разрядность, то и целые нам нужны максимальной разрядности в 64 бита.

Сегодня в учебных целях мы рассмотрим, как создать представление вещественных чисел с гарантированной точностью до 18 знаков после точки. Это достигается простым комбинированием двух 64-разрядных целых для целой и дробной части соответственно. В принципе, никто не мешает вместо одного числа для каждой из компонент взять массив значений и получить полноценную «длинную» арифметику. Но будет более чем достаточно сейчас решить проблему точности, дав возможность работать с точностью по 18 знаков до и после запятой, зафиксировав точку между двумя этими значениями и залив ее цементом.

Отсыпь и мне децимала!

Сначала немного теории. Обозначим наше две компоненты, целую и дробную часть числа, как n и f, а само число будет представимо в виде

Для целой части лучше всего подойдет знаковый тип 64-битного целого, а для дробной — беззнаковый, это упростит многие операции в дальнейшем.

Операции с типом десятичной дроби

Разумеется, тип числа с повышенной точностью будет бесполезен без арифметических операций. Сложение реализуется сравнительно просто:

NB: здесь и далее все записи в форме 1e — целые числа.

Здесь [n] — это получение целой части числа, а — получение дробной части. Все бы хорошо, но вспоминаем про ограничение целых чисел. Значение 1e+18 уже близко к грани значений беззнакового 64-битового целого типа uint64_t (потому мы его и выбрали), но нам никто не мешает чуточку упростить выражение, чтобы гарантированно оставаться в границах типа, исходя из начальных условий:

Всегда нужно учитывать две вещи при реализации операций с числами, поскольку они подразумевают интенсивное использование: во-первых, нужно всегда оптимизировать алгоритм, сводя к минимуму операций умножения и деления, поэтому стоит заранее упростить выражение математически, так, чтобы легко выполнялся первый пункт. В нашем случае все нужно свести к минимуму целочисленных делений с остатком. Во-вторых, нужно обязательно проверять все возможные ситуации переполнения числа с выходом за границы вычисляемого типа, иначе получишь весьма неочевидные ошибки при использовании своего типа.

Введем матрицу для упрощения вычисления умножения:

Здесь мы опускаем слагаемое A44 div 10 18 просто потому, что оно равно нулю. Разумеется, перед каждым сложением стоит проверить, не выйдем ли мы за пределы MAX_INT64. К счастью, мы можем оперировать беззнаковым типом uint64_t для всех компонент матрицы и для промежуточного результата. Все, что нужно будет сделать в конце, — это определить знак результата se = sa xor sc и для отрицательного числа поправить целую и дробную часть: целую уменьшить на единицу, дробную вычесть из единицы. Вот, в общем, и все умножение, главное — быть очень аккуратным. С ассемблером все на порядок проще, но этот материал выходит за рамки Академии C++.

Алгоритм деления без регистрации и СМС

Для упрощения рассмотрим нахождение обратного числа для положительного x. Если хотя бы одна из компонент x равна нулю (но не обе сразу), вычисления сильно упрощаются. Если a = 0, то:

Для более общего случая, когда x содержит ненулевые дробную и целую части, в этом случае уравнение сводится к следующему:

Теперь нужно найти максимальную степень 10, которая будет не больше a, и итерационно выполнять следующее действие:

Здесь мы всего лишь используем умножение и деление дроби на одинаковый множитель — степень десятки, а затем пошагово вычисляем деление и остаток от деления для очередной степени десятки.

Очень полезно будет завести массив степеней десяток от 0 до 18 включительно, поскольку вычислять их совершенно излишне, мы их знаем заранее и требоваться они нам будут часто.

Преобразования типов

Мы знаем и умеем достаточно, чтобы теперь превратить расплывчатые float и double в наш новенький decimal.

Здесь 103 является, по сути, той погрешностью, за которой double перестает быть точным. При желании погрешность можно еще уменьшить, здесь 10 18-15 нужно для наглядности изложения. Нормализация после преобразования нужна будет все равно, поскольку точно double заведомо ниже даже дробной части decimal. Кроме того, нужно учитывать случай, когда double выходит за пределы int64_t, при таких условиях наш decimal не сможет правильно преобразовать целую часть числа.

Все целые числа преобразовываются в decimal без проблем, просто инициализируя поле m_integral. Преобразование в обратную сторону для целых чисел также будет просто возврат m_integral, можно добавить округление m_fractional.

Преобразование из decimal в double и float сводится к вышеуказанной формуле:

Отдельно стоит рассмотреть преобразование в строку и из строки. Целочисленная часть, по сути, преобразуется в строку как есть, после этого остается только вставить decimal separator и вывести дробную часть как целое, отбросив завершающие нули. Также можно ввести поле «точность» m_precision и записывать в строку лишь указанное в нем число десятичных знаков.

Чтение из строки то же, но в обратную сторону. Здесь сложность лишь в том, что и знак, и целая часть, и разделитель дробной и целой части, и сама дробная часть — все они являются опциональными, и это нужно учитывать.

В общем и целом я предоставляю полную свободу при реализации этого класса, но на всякий случай со статьей идет несколько файлов с исходниками одной из возможных реализаций decimal, а также с небольшим тестом вещественных чисел для лучшего усвоения материала.

GITHUB

Со статьей идет несколько файлов с исходниками одной из возможных реализаций decimal, а также с небольшим тестом вещественных чисел для лучшего усвоения материала.

Не уплывай, и точка!

В заключение скажу лишь то, что подобный тип в C/C++ может появиться в весьма специфической задаче. Как правило, проблемы чисел с большой точностью решаются языками типа Python или C#, но если уж понадобилось по 15–18 знаков до запятой и после, то смело используй данный тип.

Получившийся тип decimal решает проблемы с точностью вещественных чисел и обладает большим запасом возможных значений, покрывающим int64_t. С другой стороны, типы double и float могут принимать более широкий интервал значений и выполняют арифметические операции на уровне команд процессора, то есть максимально быстро. Старайся обходиться аппаратно поддерживаемыми типами, не залезая в decimal лишний раз. Но и не бойся использовать данный тип, если есть необходимость в точном вычислении без потерь.

В помощь также знания о двоичном представлении чисел с плавающей точкой, полученные в этой статье. Зная плюсы и минусы формата типов double и float, ты всегда примешь правильное решение, какой тип пользовать. Ведь, возможно, тебе и вовсе требуется целое число, чтобы хранить массу не в килограммах, а в граммах. Будь внимателен к точности, ведь точность наверняка внимательна к тебе!

Мантисса и экспонента что это. Смотреть фото Мантисса и экспонента что это. Смотреть картинку Мантисса и экспонента что это. Картинка про Мантисса и экспонента что это. Фото Мантисса и экспонента что это

Впервые опубликовано в журнале Хакер #192.
Автор: Владимир Qualab Керимов, ведущий С++ разработчик компании Parallels

Источник

Представление чисел с плавающей точкой

Содержание

Плавающая точка [ править ]

Такой метод является компромиссом между точностью и диапазоном представляемых значений. Представление чисел с плавающей точкой рассмотрим на примере чисел двойной точности (double precision). Такие числа занимают в памяти два машинных слова (8 байт на 32-битных системах). Наиболее распространенное представление описано в стандарте IEEE 754.

Кроме чисел двойной точности также используются следующие форматы чисел:

При выборе формата программисты идут на разумный компромисс между точностью вычислений и размером числа.

Нормальная и нормализованная формы [ править ]

Числа двойной точности [ править ]

Число с плавающей точкой хранится в нормализованной форме и состоит из трех частей (в скобках указано количество бит, отводимых на каждую секцию в формате double):

Знак
Экспонента
(11 бит)
Мантисса
(52+1 бит)
0000000000001,0000000000000000000000000000000000000000000000000000
6252510

Свойства чисел с плавающей точкой [ править ]

Особые значения чисел с плавающей точкой [ править ]

Ноль (со знаком) [ править ]

В нормализованной форме невозможно представить ноль. Для его представления в стандарте зарезервированы специальные значения мантиссы и экспоненты.

Утверждение:
Знак
ЭкспонентаМантисса
0 /1000001,0000000000= [math]\pm0[/math]

Согласно стандарту выполняются следующие свойства:

Бесконечность (со знаком) [ править ]

Для приближения ответа к правильному при переполнении, в double можно записать бесконечное значение. Так же, как и в случае с нолем, для этого используются специальные значение мантиссы и экспоненты.

Знак
ЭкспонентаМантисса
0 /1111111,0000000000= [math]\pm\infty[/math]

Бесконечное значение можно получить при переполнении или при делении ненулевого числа на ноль.

Неопределенность [ править ]

В математике встречается понятие неопределенности. В стандарте double предусмотрено псевдочисло, которое арифметическая операция может вернуть даже в случае ошибки.

Знак
ЭкспонентаМантисса
0 /1111111,0 /10 /10 /10 /10 /10 /10 /10 /10 /10 /1= [math]NaN[/math]

Неопределенность можно получить в нескольких случаях. Приведем некоторые из них:

Денормализованные числа [ править ]

Ввиду сложности, денормализованные числа обычно реализуют на программном уровне, а не на аппаратном. Из-за этого резко возрастает время работы с ними. Это недопустимо в областях, где требуется большая скорость вычислений (например, видеокарты). Так как денормализованные числа представляют числа мало отличные от нуля и мало влияют на результат, зачастую они игнорируются (что резко повышает скорость). При этом используются две концепции:

Начиная с версии стандарта IEEE 754 2008 года денормализованные числа называются «субнормальными» (subnormal numbers), то есть числа, меньшие «нормальных».

Машинная эпсилон [ править ]

Unit in the last place (Unit of least precision) [ править ]

Мера единичной точности используется для оценки точности вычислений.

Погрешность предиката «левый поворот» [ править ]

Определения [ править ]

[math] \exists \tilde <\epsilon>\in D: [/math]

Расчет [math] \tilde <\epsilon>[/math] [ править ]

Теперь распишем это выражение в дабловой арифметике.

[math] |\delta_i| \leq \varepsilon_m [/math]

Заметим, что [math] v \approx \tilde [/math]

Ответ [ править ]

[math] \tilde <\epsilon>\lt 8 \varepsilon_m \tilde[/math]

Заметим, что это довольно грубая оценка. Вполне можно было бы написать [math] \tilde <\epsilon>\lt 4.25 \varepsilon_m \tilde[/math] или [math] \tilde <\epsilon>\lt 4.5 \varepsilon_m \tilde.[/math]

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *