Математическое выражение что это такое

Числовые выражения и буквенные выражения — правила

При решении примеров и уравнений нужно четко отличать — что такое числовые выражение, а что такое буквенные выражения. Поэтому сегодня пройдем эту тему и посмотрим видео. Итак, выучите правила.

Правила математики о числовых и буквенных выражениях

Число, которое получается в результате выполнения математических операций, входящих в это числовое выражение, называется значением числового выражения.

Числа, которые заменяют букву, называются значениями этой буквы.

Чтобы запомнить правила, давайте обратимся к примерам. Примеры — самый простой наглядный способ запомнить утверждения, приведенные выше.

Примеры числовых выражений

Математическое выражение что это такое. Смотреть фото Математическое выражение что это такое. Смотреть картинку Математическое выражение что это такое. Картинка про Математическое выражение что это такое. Фото Математическое выражение что это такое— в левой части этого равенства стоит числовое выражение, а в правой части — значение числового выражения.

Математическое выражение что это такое. Смотреть фото Математическое выражение что это такое. Смотреть картинку Математическое выражение что это такое. Картинка про Математическое выражение что это такое. Фото Математическое выражение что это такое— в левой части равенства — числовое выражение, а в правой части — значение числового выражения.

Посмотрите еще примеры числовых выражений:

Математическое выражение что это такое. Смотреть фото Математическое выражение что это такое. Смотреть картинку Математическое выражение что это такое. Картинка про Математическое выражение что это такое. Фото Математическое выражение что это такое

Примеры буквенных выражений

Примеры буквенных выражений:

Буквенных выражений может быть множество. Для буквенных выражений каждая буква — это определенное число. Или множество разных чисел.

Когда применяются буквенные выражения

Буквенные выражения применяются тогда, когда нам надо, например, ввести формулу для нахождения той или иной величины. Например, вы знаете — что периметр прямоугольника, это сумма всех его сторон. Для периметра в общем виде можно записать буквенное выражение:

Математическое выражение что это такое. Смотреть фото Математическое выражение что это такое. Смотреть картинку Математическое выражение что это такое. Картинка про Математическое выражение что это такое. Фото Математическое выражение что это такое, где Математическое выражение что это такое. Смотреть фото Математическое выражение что это такое. Смотреть картинку Математическое выражение что это такое. Картинка про Математическое выражение что это такое. Фото Математическое выражение что это такое— ширина прямоугольника, а Математическое выражение что это такое. Смотреть фото Математическое выражение что это такое. Смотреть картинку Математическое выражение что это такое. Картинка про Математическое выражение что это такое. Фото Математическое выражение что это такое— его длина.

В правой части вы увидели буквенное выражение, значениями букв Математическое выражение что это такое. Смотреть фото Математическое выражение что это такое. Смотреть картинку Математическое выражение что это такое. Картинка про Математическое выражение что это такое. Фото Математическое выражение что это такоеи Математическое выражение что это такое. Смотреть фото Математическое выражение что это такое. Смотреть картинку Математическое выражение что это такое. Картинка про Математическое выражение что это такое. Фото Математическое выражение что это такое— будут числа — значения ширины и длины прямоугольника.

Математическое выражение что это такое. Смотреть фото Математическое выражение что это такое. Смотреть картинку Математическое выражение что это такое. Картинка про Математическое выражение что это такое. Фото Математическое выражение что это такое

Математические выражения

Математическое выражение что это такое. Смотреть фото Математическое выражение что это такое. Смотреть картинку Математическое выражение что это такое. Картинка про Математическое выражение что это такое. Фото Математическое выражение что это такое— это математическое выражение.

Число перед буквой в математическом выражении — это коэффициент, означающий, что это число умножается на букву, которая может иметь переменное значение.

Буквенные, числовые и математические выражения — необходимо различать, чтобы понимать условия задачи, например, вас могут попросить упростить математическое выражение или попросить найти значение числового выражения. Поэтому необходимо знать — что это такое.

Источник

Выражения

Выражение — это любое сочетание чисел, букв и знаков операций. Можно сказать, что вся математика состоит из выражений.

Выражения бывают двух видов: числовые и буквенные.

Числовые выражения состоят из чисел и знаков математических операций. Например, следующие выражения являются числовыми:

Математическое выражение что это такое. Смотреть фото Математическое выражение что это такое. Смотреть картинку Математическое выражение что это такое. Картинка про Математическое выражение что это такое. Фото Математическое выражение что это такое

Буквенные выражения помимо чисел и знаков операций содержат ещё и буквы. Например, следующие выражения являются буквенными:

Математическое выражение что это такое. Смотреть фото Математическое выражение что это такое. Смотреть картинку Математическое выражение что это такое. Картинка про Математическое выражение что это такое. Фото Математическое выражение что это такое

Буквы, которые содержатся в буквенных выражениях, называются переменными. Запомните это раз и навсегда! Спросите любого школьника что такое переменная — этот вопрос поставит его в ступор, несмотря на то что он будет решать сложные задачи по математике, не зная что это такое. А между тем, переменная это фундаментальное понятие, без понимания которого математику невозможно изучать.

Под словом «изучать» мы подразумеваем самостоятельное чтение соответствующей литературы и способность понимать, что там написано. А то вроде и знаешь математику на четвёрку, задачи решаешь, но не можешь понять, что написано в лекциях и книгах. Каждому знакомо такое чувство, особенно студентам.

Поскольку понятие переменной очень важно, остановимся на нём подробнее. Посмотрите внимательно на слово «переменная». Ничего не напоминает? Слово «переменная» происходит от слов «меняться», «изменить», «изменить своё значение». Переменная в математике всегда выражена какой-то буквой. Например, запишем следующее выражение:

Значение переменной a подставляется в исходное выражение.

В результате имеем: 5 + 5 = 10

Конечно, мы рассмотрели простейшее выражение. На практике встречаются более сложные выражения, в которых присутствуют дроби, степени, корни и скобки. Выглядит это устрашающе. На самом деле ничего страшного. Главное понять сам принцип.

Математическое выражение что это такое. Смотреть фото Математическое выражение что это такое. Смотреть картинку Математическое выражение что это такое. Картинка про Математическое выражение что это такое. Фото Математическое выражение что это такоеЗначение переменной x подставляется в выражение x + 10

Переменная это своего рода контейнер, где хранится значение. Переменные удобны тем, что они позволяют, не приводя примеров доказывать теоремы, записывать различные формулы и законы.

Имея выражение a + b = c, можно пользоваться им, подставляя вместо переменных a и b любые числа. А переменная c будет получать своё значение автоматически, в зависимости от того, какие числа будут подставлены вместо a и b

Решение:

Значение выражения

Фраза « выполнить действие » означает выполнить одну из операций действия.

Значение выражения — это результат выполнения действий, содержащихся в выражении.

Рассмотрим еще примеры:

Источник

Числовые и буквенные выражения. Формулы

Так же, как и у нашего языка общения есть алфавит и знаки-помощники (точка, тире, запятая и т.д.), математический язык вычисления также имеет свой алфавит:

Буквы и цифры в математике служат для обозначения чисел.

Цифрами обозначается конкретное, какое-то определённое число.

Буквамилюбое или неизвестное число, в зависимости от задачи.

МАТЕМАТИЧЕСКИЕ ВЫРАЖЕНИЯ – это «слова» и «фразы» математики, записи, в которых содержатся:

При этом знаки математических действий и вспомогательные знаки ОБЯЗАТЕЛЬНО связывают числа и обозначают последовательность действий над ними.

Примеры математических выражений:

ВНИМАНИЕ!

НЕ ЯВЛЯЕТСЯ математическим выражением:

Например, это НЕ математические выражения:

Случаи опускания знака умножения в выражениях

В буквенных выражениях обычно знак умножения пишут только между числами, которые выражены цифрами.

В остальных случаях знак умножения опускают, например:

Как читать математические выражения

Простейшие математические выражения, состоящие из одного математического действия, называются по названию результата этого действия:

Более сложные выражения, называют по последнему выполняемому действию:

Важно не только уметь читать готовые математические выражения, но и «переводить» слова на математический язык – язык чисел, знаков действия и других символов:

Алгоритм чтения математических выражений

Чтобы прочитать математическое выражение, нужно:

При чтении сложного выражения повторяем действия алгоритма столько раз, сколько необходимо.

Формулы

Используя математические выражения можно одну величину представить в виде другой, то есть, установить зависимость значения одной величины от значения другой величины.

Велосипедист едет со скоростью \(v_<1>\) км/ч. Найти скорость:

а) автомобиля, если известно, что он едет в 3 раза быстрее: \(v_=3\cdot v_<1>\);

б) пешехода, если известно, что он двигается на 15 км/ч медленнее: \(v_

= v_<1>-15\).

Иначе это называется выразить одну величину через другую.

Многие величины в математике имеют свои собственные обозначения. Например: S – площадь фигуры, P – периметр, t – время и т.д.

Запись такого равенства называется формулой.

ФОРМУЛА – это запись зависимости значения некоторой величины от значений одной или нескольких других величин. Или другими словами, это запись правила вычисления одной неизвестной величины при помощи известных других.

Насколько публикация полезна?

Нажмите на звезду, чтобы оценить!

Средняя оценка 3.3 / 5. Количество оценок: 8

Источник

Числовые и буквенные выражения

Математическое выражение что это такое. Смотреть фото Математическое выражение что это такое. Смотреть картинку Математическое выражение что это такое. Картинка про Математическое выражение что это такое. Фото Математическое выражение что это такое

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Числовые выражения: что это

Числовое выражение — это запись, которая состоит из чисел и знаков арифметического действия между ними.

Именно числовые выражения окружают нас повсюду — не только на уроках математики, но и в магазине, на кухне или когда мы считаем время. Простые примеры, в которых нужно вычислить разность, сумму, получить результат умножения или деления — это все числовые выражения.

Например:

Это простые числовые выражения.

Чтобы получить сложное числовое выражение, нужно к простому выражению присоединить знаком арифметического действия еще одно простое числовое выражение. Вот так:

Это сложные числовые выражения.

Знать, где простое выражение, а где сложное — нужно, но называть оба типа выражений следует просто «числовое выражение».

Число, которое мы получаем после выполнения всех арифметических действий в числовом выражении, называют значением этого выражения.

Вспомним, какие виды арифметических действий есть.
+ — знак сложения, найти сумму.
— — знак вычитания, найти разность.
* — знак умножения, найти произведение.
: — знак деления, найти частное.

11 — значение числового выражения.
6 * 8 = 48
48 — значение числового выражения.

При вычислении сложных числовых выражений нужно строго соблюдать очередность выполнения арифметических действий:

Пример 2. Найдите значение числового выражения: (6 + 7) * (13 + 2)

Часто бывает нужно сравнить два числовых выражения.

Сравнить числовые выражения — значит найти значения каждого выражения и сравнить их.

Пример 1. Сравните два числовых выражения: 6 + 8 и 2 * 2

14 больше 4
14 > 4
6 + 8 > 2 * 2

Буквенные выражения

Кажется, с числовыми выражениями все достаточно просто. Буквенные выражения немногим сложнее.

В буквенном выражение есть цифры, знаки арифметических действия и буквы.

Получается, что буквенное выражение — это числовое выражение, в котором есть не только числа, но и буквы.

Это буквенные выражения. Для записи буквенных выражений используют буквы латинского алфавита.

У буквенных выражений, как и у числовых, есть определенный алгоритм вычисления:

Пример 1. Найдите значение выражения: 5 + x.

Пример 2. Найдите значение выражения: (4 + a) * (2 + x).

Выражения с переменными

Переменная — это значение буквы в буквенном выражении.

Числа, которые подставляют вместо переменных — это значения переменных. В нашем примере это числа 5 и 10.

Число и переменная записаны без знака арифметического действия. Так коротко записывается умножение.

5x — это произведение числа 5 и переменной x
4a — это произведение числа 4 и переменной a

Числа 4 и 5 называют коэффициентами.
Коэффициент показывает, во сколько раз будет увеличена переменная.

Теперь вы вооружены всеми необходимыми теоретическими знаниями о числовых и буквенных выражениях. Давайте немного поупражняемся в решении задачек и примеров, чтобы научиться применять полученные знания на практике.

Задание раз.

Задание два.

Составьте буквенное выражение:

Сумма разности b и 345 и суммы 180 и x.

Ответ: роллы “Калифорния” и “Филадельфия” вместе стоят 1 000 рублей.

Задание пять.
Составьте выражение для решения задачи и найдите его значение.
Маша посмотрела за день 150 видео в ТикТок, а Лена — на 13 видео больше. Сколько всего видео было просмотрено обеими девочками?

150 + (150 + 13)
Выполняем сначала действие в скобках: 150 + 13 = 163.
150 + 163 = 313.

Ответ: Маша и Лена посмотрели всего 313 видео.

Источник

Числовые и алгебраические выражения. Преобразование выражений.

Что такое выражение в математике? Зачем нужны преобразования выражений?

Допустим, перед вами злой пример. Очень большой и очень сложный. Допустим, вы сильны в математике и ничего не боитесь! Сможете сразу дать ответ?

Вам придётся решать этот пример. Последовательно, шаг за шагом, этот пример упрощать. По определённым правилам, естественно. Т.е. делать преобразование выражений. Насколько успешно вы проведёте эти преобразования, настолько вы и сильны в математике. Если вы не умеете делать правильные преобразования, в математике вы не сможете сделать ни-че-го.

Во избежание такого неуютного будущего (или настоящего. ), не мешает разобраться в этой теме.)

Для начала выясним, что такое выражение в математике. Что такое числовое выражение и что такое алгебраическое выражение.

Что такое выражение в математике?

В общем виде термин «математическое выражение» применяется, чаще всего, чтобы не мычать. Спросят вас, что такое обыкновенная дробь, например? И как ответить?!

Первый вариант ответа: «Это. м-м-м-м. такая штука. в которой. А можно я лучше напишу дробь? Вам какую?»

Второй вариант как-то посолидней будет, правда?)

Вот в этих целях фраза «математическое выражение» очень хороша. И правильно, и солидно. Но для практического применения надо хорошо разбираться в конкретных видах выражений в математике.

Числовые выражения.

Что такое числовое выражение? Это очень простое понятие. Само название намекает, что это выражение с числами. Да, так оно и есть. Математическое выражение, составленное из чисел, скобок и знаков арифметических действий называется числовым выражением.

Математическое выражение что это такое. Смотреть фото Математическое выражение что это такое. Смотреть картинку Математическое выражение что это такое. Картинка про Математическое выражение что это такое. Фото Математическое выражение что это такое

тоже числовое выражение, да.

Когда числовое выражение не имеет смысла?

Понятное дело, если мы видим перед собой какую-то абракадабру, типа

то делать ничего и не будем. Так как непонятно, что с этим делать. Бессмыслица какая-то. Разве что, посчитать количество плюсиков.

Но бывают внешне вполне благопристойные выражения. Например такое:

Чтобы дать такой ответ, пришлось, конечно, посчитать, что в скобочках будет. А иногда в скобочках такого понаворочено. Ну тут уж ничего не поделаешь.

Алгебраические выражения.

и так далее, до бесконечности. )

В арифметике можно записать, что

А вот если мы подобное равенство запишем через алгебраические выражения:

мы сразу решим все вопросы. Для всех чисел махом. Для всего бесконечного количества. Потому, что под буквами а и b подразумеваются все числа. И не только числа, но даже и другие математические выражения. Вот так работает алгебра.

Когда алгебраическое выражение не имеет смысла?

Про числовое выражение всё понятно. Там на ноль делить нельзя. А с буквами, разве можно узнать, на что делим?!

Возьмём для примера вот такое выражение с переменными:

Конечно. Просто в таких случаях говорят, что выражение

имеет смысл для любых значений а, кроме а = 5.

Весь набор чисел, которые можно подставлять в заданное выражение, называется областью допустимых значений этого выражения.

Как видите, ничего хитрого нет. Смотрим на выражение с переменными, да соображаем: при каком значении переменной получается запретная операция (деление на ноль)?

А потом обязательно смотрим на вопрос задания. Чего спрашивают-то?

Если спрашивают, при каком значении переменной выражение не имеет смысла, наше запретное значение и будет ответом.

Если спрашивают, при каком значении переменной выражение имеет смысл (почувствуйте разницу!), ответом будут все остальные числа, кроме запретного.

Зачем нам смысл выражения? Есть он, нет его. Какая разница?! Дело в том, что это понятие становится очень важным в старших классах. Крайне важным! Это основа для таких солидных понятий, как область допустимых значений или область определения функции. Без этого вы вообще не сможете решать серьёзные уравнения или неравенства. Вот так.

Преобразование выражений. Тождественные преобразования.

Мы познакомились с числовыми и алгебраическими выражениями. Поняли, что означает фраза «выражение не имеет смысла». Теперь надо разобраться, что такое преобразование выражений. Ответ прост, до безобразия.) Это любое действие с выражением. И всё. Вы эти преобразования делали с первого класса.

Возьмём крутое числовое выражение 3+5. Как его можно преобразовать? Да очень просто! Посчитать:

Вот этот расчёт и будет преобразованием выражения. Можно записать то же самое выражение по-другому:

Тут мы вообще ничего не считали. Просто записали выражение в другом виде. Это тоже будет преобразованием выражения. Можно записать вот так:

Любое действие над выражением, любая запись его в другом виде называется преобразованием выражения. И все дела. Всё очень просто. Но есть здесь одно очень важное правило. Настолько важное, что его смело можно назвать главным правилом всей математики. Нарушение этого правила неизбежно приводит к ошибкам. Вникаем?)

Предположим, мы преобразовали наше выражение как попало, вот так:

Преобразование? Конечно. Мы же записали выражение в другом виде, что здесь не так?

Всё не так.) Дело в том, что преобразования «как попало» математику не интересуют вообще.) Вся математика построена на преобразованиях, в которых меняется внешний вид, но суть выражения не меняется. Три плюс пять можно записать в каком угодно виде, но это должно быть восемь.

Преобразования, не меняющие сути выражения называются тождественными.

Именно тождественные преобразования и позволяют нам, шаг за шагом, превращать сложный пример в простое выражение, сохраняя суть примера. Если в цепочке преобразований мы ошибёмся, сделаем НЕ тождественное преобразование, дальше мы будем решать уже другой пример. С другими ответами, которые не имеют отношения к правильным.)

Вот оно и главное правило решения любых заданий: соблюдение тождественности преобразований.

Пример с числовыми выражением 3+5 я привёл для наглядности. В алгебраических выражениях тождественные преобразования даются формулами и правилами. Скажем, в алгебре есть формула:

Математическое выражение что это такое. Смотреть фото Математическое выражение что это такое. Смотреть картинку Математическое выражение что это такое. Картинка про Математическое выражение что это такое. Фото Математическое выражение что это такое

Как вы, наверняка, догадались, эту цепочку можно продолжать до бесконечности. ) Очень важное свойство. Именно оно позволяет превращать всякие монстры-примеры в белые и пушистые.)

Если Вам нравится этот сайт.

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

А вот здесь можно познакомиться с функциями и производными.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *