Математика 6 класс пропорции что это
Математика. 6 класс
Конспект урока
Перечень рассматриваемых вопросов:
Равенство двух отношений называют пропорцией.
Основное свойство пропорции: произведение крайних членов пропорции равно произведению её средних членов.
Теоретический материал для самостоятельного изучения
Основное свойство пропорции: произведение крайних членов пропорции равно произведению её средних членов.
Если один член пропорции неизвестен и необходимо его определить, то говорят, что нужно решить пропорцию.
Рассмотрим 3 способа нахождения неизвестного члена пропорции.
Разбор решения заданий тренировочного модуля
№1. Тип задания: сортировка элементов по категориям.
№2. Тип задания: Подстановка элементов в пропуски в тексте.
Найдите неизвестный член пропорции.
Для нахождения неизвестного члена пропорции воспользуемся основным свойством пропорции, из которого следует: чтобы найти неизвестный средний член пропорции, надо произведение крайних членов разделить на известный средний член пропорции.
Урок 22 Бесплатно Пропорции
Чтобы узнать название темы урока, обратите внимание на картинку.
Попробуйте отгадать ребус.
На этом уроке вы узнаете, что называют пропорцией, выведете основное свойство пропорции и с помощью него научитесь решать задачи и уравнения.
Пропорция
В IV веке до н.э. древнегреческий математик Евдокс Книдский дал определение пропорции, состоящей из величин любой природы, а не только из натуральных величин.
Пропорции применяли с древности при решении различных задач.
Древние греки использовали пропорцию и ее свойство для строительства сооружений, при создании произведений искусства (скульптуры, статуи), в ремесленническом деле и др.
Соблюдение пропорций, определенных соотношений, активно используется и в настоящее время в архитектуре, искусстве, музыке, при решении физических задач.
В географии и моделировании пропорциональные зависимости применяют при создании уменьшенной копии реального объекта.
В химии для проведения успешной реакции рассчитывают пропорциональное отношение химических веществ.
В медицине и фармацевтике используют пропорции при изготовлении лекарственных препаратов.
В кулинарии, например, с помощью пропорции можно рассчитать рецепт одного и того же блюда для разного количества гостей.
Разберем, что же такое пропорция в математическом понимании.
Возьмем два отношения: \(\mathbf<\frac<36><9>>\) и \(\mathbf<\frac<12><3>>\) и эти отношения равны, так как \(\mathbf<36\div9=4>\) и \(\mathbf<12\div3=4>\), значит \(\mathbf<\frac<36><9>= \frac<12><3>>\)
Равенство двух отношений называют пропорцией.
С помощью букв запишем пропорцию из двух отношений так: \(\mathbf\) или \(\mathbf<\frac= \frac
Эту математическую запись читают так: «Отношение a к b равно отношению c к d» или «a так относится к b, как c относится к d».
Все члены пропорции не равны нулю: \(\mathbf\).
Числа a и d называют крайними членами пропорции.
Числа b и c называют средними членами пропорции.
У меня есть дополнительная информация к этой части урока!
В мире существует «золотая пропорция», которую называют «золотым сечением». Это пропорциональное деление отрезка на различные по размеру части, но в таком соотношении к друг другу, что меньший отрезок так относится к большему, как больший ко всей величине.
Приблизительное значение «золотого сечения» равно 1,618… Число это продолжается бесконечно после запятой, и оно не периодично.
В процентном выражении целая часть относится к большей, как большая к меньшей, примерно так: 62% и 38% соответственно.
Обозначают число «золотого сечения» математической буквой \(\mathbf<\varphi>\) (фи).
Мир живой и неживой природы, мир творений человека полон красоты, симметрии и гармонии. Этот мир описывается законом «золотого сечения».
Рассмотрим только несколько примеров, где присутствует и используется правило «золотого сечения».
Считается, что длина фаланг пальцев и длина кисти руки, средний палец и мизинец, или высота лица и расстояние от кончика подбородка до центральной точки соединения губ у пропорционального человека находятся в определенных отношениях, соответствуя правилу «золотого сечения».
Форма тела ящериц, стрекоз, бабочек соответствует закону «золотого сечения»: отношение грудной и брюшной части тела приближенно равны значению «золотого сечения».
Спиралевидная форма ракушек тоже описывается числом \(\mathbf<\varphi>\) (фи).
«Золотая пропорция» была обнаружена в египетских пирамидах, произведениях искусства, архитектуре и применяется до сих пор в разных областях жизни человека
Пройти тест и получить оценку можно после входа или регистрации
Составление и решение пропорций в математике
Пропорции — что это в математике
Валя съела 3 яблока из пяти. Какую часть яблок съела Валя?
Вначале узнаем, какую часть яблок составляет 1 яблоко. Всего у Вали было 5 яблок, значит, одно из них — это 1 5 часть всех яблок. Тогда 3 съеденных яблока составляют 3 5 всех яблок.
Тот же ответ получим, если 3 разделим на пять.
Получается, что 3 яблока соотносятся с пятью яблоками как 3 к 5.
Отношением двух чисел называют частное этих чисел.
Отношение показывает, во сколько раз одно число больше другого. Или какую часть первое число составляет от второго.
Термин «отношение» применяют в случаях, когда нужно выразить одну величину в долях другой. Например, одну площадь в долях другой площади. Это операцию выполняют с помощью деления.
Делимое в выражении отношения называют предыдущим членом. Делитель называют последующим членом.
В задаче 1 предыдущий член — это 3, последующий — 5.
Если есть два равных отношения, то они образуют пропорцию.
Пропорцией называют равенство двух отношений.
Даны два отношения: 3,8:2 и 5,7:3.
Можно ли составить из этих выражений пропорцию?
Найдем значения каждого из отношений:
Значения выражений оказались равными, значит, эти отношения равны.
Тогда можно записать равенство: 3,8:2=5,7:3.
Такое равенство называется пропорцией.
Ответ: да, можно составить из этих отношений чисел пропорцию.
Полученное равенство читают: «Отношение a к b равно отношению c к d» или «a относится к b, как c относится к d».
Числа a и d в пропорции называют крайними членами пропорции.
Числа b и c — средними членами пропорции.
Назовите крайние и средние члены пропорции 42:6=49:7.
Крайние члены пропорции — 42 и 7.
Средние члены пропорции — 6 и 49.
Средние члены пропорции — 5 и 35.
Понятие «пропорция» пришло из латинского языка. Слово в переводе означает соразмерность, определенное соотношение частей между собой.
Основное свойство пропорции, правило
Основное свойство пропорции
В верной пропорции произведение крайних членов равно произведению средних членов:
Определите, верна ли пропорция 6:2=9:3.
В верной пропорции произведение крайних членов равно произведению средних членов.
Значит, 6:2=9:3. Пропорция верна.
Обратное утверждение тоже верно:
Если произведение средних членов равно произведению крайних членов, то пропорция верна.
Если поменять в это пропорции местами средние члены, получим 60:10=12:2. Эта пропорция тоже верна. При перестановке произведение крайних и средних членов не изменилось.
Если в пропорции поменять крайние члены — 2:10=12:60, то произведение тоже не изменится.
Пропорция будет верной, если поменять местами средние члены или крайние члены.
Если какой-то из членов пропорции неизвестен, то его можно найти.
По основному свойству пропорции можно найти ее неизвестный член, если все остальные компоненты известны.
Найдите неизвестный член пропорции: 4,8:b=8:2,5.
Используем основное свойство пропорции: произведение крайних членов = произведению средних членов.
Составление и решение пропорций
Запишите пропорцию: 6 так относится к 18, как 9 относится к 27.
Слово «относится» заменяем на знак деления.
Получаем два отношения: 6:18 и 9:27.
Если эти два отношения равны, то получаем верную пропорцию.
Проверяем, верна ли пропорция.
Для этого воспользуемся основным свойством пропорции: произведение крайних членов = произведению средних членов.
Чтобы проверить, верна ли пропорция, воспользуемся основным свойством пропорции.
Запишем произведения крайних и средних членов пропорции:
Значит, произведение крайних членов равно произведению средних членов.
Вывод: пропорция верна.
Примеры уравнений с решением для 6 класса
Чтобы найти неизвестный член пропорции, используем основное свойство пропорции. Находим произведение крайних и средних членов. Выражаем неизвестный компонент.
Используем основное свойство пропорций. Записываем равенства произведений крайних и средних членов.
Решите уравнение: 0,25:x=3,75:3.
Но чтобы выражение осталось неизменным, нужно домножить на сто и делимое.
Чтобы найти неизвестный компонент пропорции, нужно воспользоваться основным свойством дроби.
По основному свойству дроби произведение крайних членов равно произведению средних членов.
Записываем полученное выражение:
1 действие — умножение.
Переводим смешанное число в неправильную дробь и умножаем на вторую: числитель на числитель, знаменатель на знаменатель.
Сокращаем дробь: есть одинаковые числа в числителе и знаменателе.
2 действие — деление.
Смешанное число переводим в неправильную дробь.
Умножаем 7 5 на взаимно обратную дробь.
Задачи на пропорции
5 класс, 7 класс, 8 класс
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Понятие пропорции
Чтобы решать задачи на тему пропорции, вспомним главное определение.
Пропорция в математике — это равенство между отношениями двух или нескольких пар чисел или величин.
Главное свойство пропорции:
Произведение крайних членов равно произведению средних.
где a, b, c, d — члены пропорции, a, d — крайние члены, b, c — средние члены.
Вывод из главного свойства пропорции:
Решить пропорцию — значит найти неизвестный член. Свойство пропорции — главный помощник в решении.
Рассмотрим легкие и сложные задачи, которые можно решить с помощью пропорции. 5, 6, 7, 8 класс — неважно, всем школьникам полезно проанализировать занимательные задачки.
Задачи на пропорции с решением и ответами
Свойства пропорции придумали не просто так! С их помощью можно найти любой из членов пропорции, если он неизвестен. Решим 10 задач на пропорцию.
Задание 1. Найти неизвестный член пропорции: x/2 = 3/1
В этом примере неизвестны крайние члены, поэтому умножим средние члены и разделим полученный результат на известный крайний член:
Задание 2. Найти неизвестный член: 1/3 = 5/y
Задача 3. Решить пропорцию: 30/x = 5/8
Задание 4. Решить: 7/5 = y/10
Задание 5. Известно, что 21x = 14y. Найти отношение x — к y
На следующем примере мы узнаем как составить пропорцию по задаче💡
Задание 6. Из 300 подписчиков в инстаграм 108 человек — поставили лайк под постом. Какой процент всех подписчиков составляют те, кому понравился пост и они поставили лайк?
Ответ: 36% всех подписчиков поставили лайк под постом.
Задание 7. Подруга Гарри Поттера при варке оборотного зелья использовала водоросли и пиявки в отношении 5 к 2. Сколько нужно водорослей, если есть только 450 грамм пиявок?
Ответ: на 450 грамм пиявок нужно взять 1125 гр водорослей.
Задание 8. Известно, что арбуз состоит на 98% из воды. Сколько воды в 5 кг арбуза?
Вес арбуза (5 кг) составляет 100%. Вода — 98% или х кг.
Ответ: в 5 кг арбуза содержится 4,9 кг воды.
Перейдем к примерам посложнее. Рассмотрим задачу на пропорции из учебника по алгебре за 8 класс.
Задание 9. Папин автомобиль проезжает от одного города до другого за 13 часов со скоростью 75 км/ч. Сколько времени ему понадобится, если он будет ехать со скоростью 52 км/ч?
Скорость и время связаны обратно пропорциональной зависимостью: чем больше скорость, тем меньше времени понадобится.
Соотношения равны, но перевернуты относительно друг друга.
t2 = (75 * 13)/52 = 75/4 = 18 3/4 = 18 ч 45 мин
Ответ: 18 часов 45 минут.
Задание 10. 24 человека за 5 дней раскрутили канал в телеграм. За сколько дней выполнят ту же работу 30 человек, если будут работать с той же эффективностью?
1. В заполненном столбце стрелку ставим в направлении от большего числа к меньшему.
2. Чем больше людей, тем меньше времени нужно для выполнения определенной работы (раскрутки канала). Значит, это обратно пропорциональная зависимость.
3. Поэтому направим вторую стрелку в противоположную сторону. Обратная пропорция выглядит так:
Пропорция
Продолжаем изучать соотношения. В данном уроке мы познакомимся с пропорцией.
Что такое пропорция?
Пропорцией называют равенство двух отношений. Например, отношение равно отношению
Данная пропорция читается следующим образом:
Десять так относится к пяти, как два относится к одному
Дроби, из которых составлена пропорция, всегда равны. Например, если в пропорции выполнить деление в обеих дробях, то получится число 2 в обеих частях:
Предположим, что в классе 10 девочек и 5 мальчиков
Запишем отношение десяти девочек к пяти мальчикам:
Преобразуем данное отношение в дробь
Выполнив деление в этой дроби, мы получим 2. То есть десять девочек так будут относиться к пяти мальчикам, что на одного мальчика будет приходиться две девочки
Теперь рассмотрим другой класс в котором две девочки и один мальчик
Запишем отношение двух девочек к одному мальчику:
Преобразуем данное отношение в дробь:
Выполнив деление в этой дроби, мы снова получим 2. То есть две девочки так будут относиться к одному мальчику, что на этого одного мальчика будут приходиться две девочки:
В нашем примере десять девочек так относятся к пяти мальчикам, как и две девочки относятся к одному мальчику.
Пример 2. Рассмотрим отношение 12 девочек к 3 мальчикам
а также отношение 12 девочек к 2 мальчикам
Данные отношения не являются пропорциональными. Другими словами, мы не можем записать, что , поскольку первое отношение, как видно на рисунке показывает, что на одного мальчика приходятся четыре девочки, а второе отношение показывает, что на одного мальчика приходятся шесть девочек.
Поэтому отношение не пропорционально отношению .
Вторая рассмотренная нами пропорция была . Мы пришли к выводу, что она составлена неправильно, поэтому поставили между дробями и знак не равно (≠). Если выполнить деление в этих дробях, получим числа 4 и 6. Понятно, что 4 не равно 6.
Можно проверить это, выполнив деление в этих дробях, то есть разделить 4 на 2, а 8 на 4. В результате с двух сторон получатся двойки. А 2 равно 2
Все числа, находящиеся в пропорции (числители и знаменатели обеих дробей) называются членами пропорции. Эти члены подразделяются на два вида: крайние члены и средние члены.
В нашей пропорции крайние члены это 4 и 4, а средние члены это 2 и 8
Почему крайние члены называют крайними, а средние средними? Если записать пропорцию не в дробном, а в обычном виде, то сразу станет всё понятно:
Числа 4 и 4 располагаются с краю, поэтому их назвали крайними, а числа 2 и 8 располагаются посередине, поэтому их назвали средними:
С помощью переменных пропорцию можно записать так:
Данное выражение можно прочесть следующим образом:
a так относится к b, как c относится к d
Смысл данного предложения уже понятен. Речь идет о членах, участвующих в соотношении. a и d — это крайние члены пропорции, b и c — средние члены пропорции.
Основное свойство пропорции
Основное свойство пропорции выглядит следующим образом:
Произведение крайних членов пропорции равно произведению её средних членов.
Мы знаем, что произведение это ни что иное, как обычное умножение. Чтобы проверить правильно ли составлена пропорция, нужно перемножить её крайние и средние члены. Если произведение крайних членов будет равно произведению средних членов, то такая пропорция составлена правильно.
Например, проверим правильно ли составлена пропорция . Для этого перемножим её крайние и средние члены. Легко заметить, что крайние и средние члены пропорции располагаются «крест-накрест», поэтому в умножении нет ничего сложного. Перемножаем члены пропорции «крест-накрест»:
4 × 4 = 16 — произведение крайних членов пропорции равно 16.
2 × 8 = 16 — произведение средних членов пропорции так же равно 16.
4 × 4 = 2 × 8
4 × 4 = 2 × 8 — произведение крайних членов равно произведению средних членов. Значит пропорция составлена правильно.
Пример 2. Проверить правильно ли составлена пропорция
Проверим равно ли произведение крайних членов пропорции произведению её средних членов. Перемножим члены пропорции крест-накрест:
2 × 6 = 12 — произведение крайних членов пропорции равно 12
3 × 1 = 3 — произведение средних членов пропорции равно 3
2 × 6 ≠ 3 × 1 — произведение крайних членов пропорции НЕ равно произведению её средних членов. Значит пропорция составлена неправильно.
Поэтому в пропорции разумнее заменить знак равенства (=) на знак не равно (≠)
Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках
Возникло желание поддержать проект?
Используй кнопку ниже