Математика пятый класс что такое натуральные числа

Натуральные числа. Ряд натуральных чисел.

История натуральных чисел началась ещё в первобытные времена. Издревле люди считали предметы. Например, в торговле нужен был счет товара или в строительстве счет материала. Да даже в быту тоже приходилось считать вещи, продукты, скот. Сначала числа использовались только для подсчета в жизни, на практике, но в дальнейшем при развитии математики стали частью науки.

Натуральные числа – это числа которые мы используем при счете предметов.

Например: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ….

Нуль не относится к натуральным числам.

Все натуральные числа или назовем множество натуральных чисел обозначается символом N.

Таблица натуральных чисел.

Математика пятый класс что такое натуральные числа. Смотреть фото Математика пятый класс что такое натуральные числа. Смотреть картинку Математика пятый класс что такое натуральные числа. Картинка про Математика пятый класс что такое натуральные числа. Фото Математика пятый класс что такое натуральные числа

Натуральный ряд.

Натуральные числа, записанные подряд в порядке возрастания, образуют натуральный ряд или ряд натуральных чисел.

Свойства натурального ряда:

Пример №1:
Напишите первых 5 натуральных числа.
Решение:
Натуральные числа начинаются с единицы.
1, 2, 3, 4, 5

Пример №2:
Нуль является натуральным числом?
Ответ: нет.

Пример №3:
Какое первое число в натуральном ряду?
Ответ: натуральный ряд начинается с единицы.

Пример №4:
Какое последнее число в натуральном ряде? Назовите самое большое натуральное число?
Ответ: Натуральный ряд начинается с единицы. Каждое следующее число больше предыдущего на единицу, поэтому последнего числа не существует. Самого большого числа нет.

Пример №5:
У единицы в натуральном ряду есть предыдущее число?
Ответ: нет, потому что единица является первым числом в натуральном ряду.

Пример №6:
Назовите следующее число в натуральном ряду за числами: а)5, б)67, в)9998.
Ответ: а)6, б)68, в)9999.

Пример №7:
Сколько чисел находится в натуральном ряду между числами: а)1 и 5, б)14 и 19.
Решение:
а) 1, 2, 3, 4, 5 – три числа находятся между числами 1 и 5.
б) 14, 15, 16, 17, 18, 19 – четыре числа находятся между числами 14 и 19.

Пример №8:
Назовите предыдущее число за числом 11.
Ответ: 10.

Пример №9:
Какие числа применяются при счете предметов?
Ответ: натуральные числа.

Источник

Натуральные числа

Математика пятый класс что такое натуральные числа. Смотреть фото Математика пятый класс что такое натуральные числа. Смотреть картинку Математика пятый класс что такое натуральные числа. Картинка про Математика пятый класс что такое натуральные числа. Фото Математика пятый класс что такое натуральные числа

Определение натурального числа

Натуральные числа — это числа, которые мы используем для подсчета чего-то конкретного, осязаемого.

Вот какие числа называют натуральными: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 и т. д.

Натуральный ряд — последовательность всех натуральных чисел, расположенных в порядке возрастания. Первые сто можно посмотреть в таблице.

Какие операции возможны над натуральными числами

Записывайтесь на курсы обучения математике для учеников с 1 по 11 классы!

Десятичная запись натурального числа

В школе мы проходим тему натуральных чисел в 5 классе, но на самом деле многое нам может быть интуитивно понятно и раньше. Проговорим важные правила.

Мы регулярно используем цифры: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. При записи любого натурального числа можно использовать только эти цифры без каких-либо других символов. Записываем цифры одну за другой в строчку слева направо, используем одну высоту.

Примеры правильной записи натуральных чисел: 208, 567, 24, 1 467, 899 112. Эти примеры показывают нам, что последовательность цифр может быть разной и некоторые даже могут повторяться.

077, 0, 004, 0931 — это примеры неправильной записи натуральных чисел, потому что ноль расположен слева. Число не может начинаться с нуля. Это и есть десятичная запись натурального числа.

Количественный смысл натуральных чисел

Натуральные числа несут в себе количественный смысл, то есть выступают в качестве инструмента для нумерации.

Представим, что перед нами банан 🍌. Мы можем записать, что видим 1 банан. При этом натуральное число 1 читается как «один» или «единица».

Но термин «единица» имеет еще одно значение: то, что можно рассмотреть, как единое целое. Элемент множества можно обозначить единицей. Например, любое дерево из множества деревьев — единица, любой листок из множества листков — единица.

Представим, что перед нами 2 банана 🍌🍌. Натуральное число 2 читается как «два». Далее, по аналогии:

🍌🍌🍌3 предмета («три»)
🍌🍌🍌🍌4 предмета («четыре»)
🍌🍌🍌🍌🍌5 предметов («пять»)
🍌🍌🍌🍌🍌🍌6 предметов («шесть»)
🍌🍌🍌🍌🍌🍌🍌7 предметов («семь»)
🍌🍌🍌🍌🍌🍌🍌🍌8 предметов («восемь»)
🍌🍌🍌🍌🍌🍌🍌🍌🍌9 предметов («девять»)

Основная функция натурального числа — указать количество предметов.

Если запись числа совпадает с цифрой 0, то его называют «ноль». Напомним, что ноль — не натуральное число, но он может обозначать отсутствие. Ноль предметов значит — ни одного.

Однозначные, двузначные и трехзначные натуральные числа

Однозначное натуральное число — это такое число, в составе которого один знак, одна цифра. Девять однозначных натуральных чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9.

Двузначные натуральные числа — те, в составе которых два знака, две цифры. Цифры могут повторяться или быть различными. Например: 88, 53, 70.

Если множество предметов состоит из девяти и еще одного, значит, речь идет об 1 десятке («один десяток») предметов. Если один десяток и еще один, значит, перед нами 2 десятка («два десятка») и так далее.

По сути, двузначное число — это набор однозначных чисел, где одно записывается справа, а другое слева. Число слева показывает количество десятков в составе натурального числа, а число справа — количество единиц. Всего двузначных натуральных чисел — 90.

Трехзначные натуральные числа — числа, в составе которых три знака, три цифры. Например: 666, 389, 702.

Одна сотня — это множество, состоящее из десяти десятков. Сотня и еще одна сотня — 2 сотни. Прибавим еще одну сотню — 3 сотни.

Вот как происходит запись трехзначного числа: натуральные числа записываются одно за другим слева направо.

Крайнее правое однозначное число указывает на количество единиц, следующее — на количество десятков, крайнее левое — на количество сотен. Цифра 0 показывает отсутствие единиц или десятков. Поэтому 506 — это 5 сотен, 0 десятков и 6 единиц.

Точно так же определяются четырехзначные, пятизначные, шестизначные и другие натуральные числа.

Многозначные натуральные числа

Многозначные натуральные числа состоят из двух и более знаков.

1 000 — это множество с десятью сотнями, 1 000 000 состоит из тысячи тысяч, а один миллиард — это тысяча миллионов. Тысяча миллионов, только представьте! То есть мы можем рассмотреть любое многозначное натуральное число как набор однозначных натуральных чисел.

Например, 2 873 206 содержит в себе: 6 единиц, 0 десятков, 2 сотни, 3 тысячи, 7 десятков тысяч, 8 сотен тысяч и 2 миллиона.

Сколько всего натуральных чисел?

Однозначных 9, двузначных 90, трехзначных 900 и т.д.

Свойства натуральных чисел

Об особенностях натуральных чисел мы уже знаем. А теперь подробно расскажем про их свойства:

множество натуральных чиселбесконечно и начинается с единицы (1)
за каждым натуральным числом следует другоеоно больше предыдущего на 1
результат деления натурального числа на единицу (1)само натуральное число: 5 : 1 = 5
результат деления натурального числа самого на себяединица (1): 6 : 6 = 1
переместительный закон сложенияот перестановки мест слагаемых сумма не меняется: 4 + 3 = 3 + 4
сочетательный закон сложениярезультат сложения нескольких слагаемых не зависит от порядка действий: (2 + 3) + 4 = 2 + (3 + 4)
переместительный закон умноженияот перестановки мест множителей произведение не изменится: 4 × 5 = 5 × 4
сочетательный закон умножениярезультат произведения множителей не зависит от порядка действий; можно хоть так, хоть эдак: (6 × 7) × 8 = 6 × (7 × 8)
распределительный закон умножения относительно сложениячтобы умножить сумму на число, нужно каждое слагаемое умножить на это число и полученные результаты сложить: 4 × (5 + 6) = 4 × 5 + 4 × 6
распределительный закон умножения относительно вычитаниячтобы умножить разность на число, можно умножить на это число отдельно уменьшаемое и вычитаемое, а затем из первого произведения вычесть второе: 3 × (4 − 5) = 3 × 4 − 3 × 5
распределительный закон деления относительно сложениячтобы разделить сумму на число, можно разделить на это число каждое слагаемое и сложить полученные результаты: (9 + 8) : 3 = 9 : 3 + 8 : 3
распределительный закон деления относительно вычитаниячтобы разделить разность на число, можно разделить на это число сначала уменьшаемое, а затем вычитаемое, и из первого произведения вычесть второе: (5 − 3) : 2 = 5 : 2 − 3 : 2

Разряды натурального числа и значение разряда

Напомним, что от позиции, на которой стоит цифра в записи числа, зависит ее значение. Так, например, 1 123 содержит в себе: 3 единицы, 2 десятка, 1 сотню, 1 тысячу. При этом можно сформулировать иначе и сказать, что в заданном числе 1 123 цифра 3 располагается в разряде единиц, 2 в разряде десятков, 1 в разряде сотен и 1 служит значением разряда тысяч.

Разряд — это позиция, место расположения цифры в записи натурального числа.

У каждого разряда есть свое название. Слева всегда располагаются старшие разряды, а справа — младшие. Чтобы быстрее запомнить, можно использовать таблицу.

Количество разрядов всегда соответствует количеству знаков в числе. В этой таблице есть названия всех разрядов для числа, которое состоит из 15 знаков. У следующих разрядов также есть названия, но они используются крайне редко.

Низший (младший) разряд многозначного натурального числа — разряд единиц.

Высший (старший) разряд многозначного натурального числа — разряд, соответствующий крайней левой цифре в заданном числе.

Вы наверняка заметили, что в учебниках часто ставят небольшие пробелы при записи многозначных чисел. Так делают, чтобы натуральные числа было удобно читать. А еще — чтобы визуально разделить разные классы чисел.

Класс — это группа разрядов, которая содержит в себе три разряда: единицы, десятки и сотни.

Десятичная система счисления

Люди в разные времена использовали разные методы записи чисел. И каждая система счисления имеет свои правила и особенности.

Десятичная система счисления — самая распространенная система счисления, в которой для записи чисел используют десять знаков: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

В десятичной системе значение одной и той же цифры зависит от ее позиции в записи числа. Например, число 555 состоит из трех одинаковых цифр. В этом числе первая слева цифра означает пять сотен, вторая — пять десятков, а третья — пять единиц. Так как значение цифры зависит от ее позиции, десятичную систему счисления называют позиционной.

Вопрос для самопроверки

Сколько натуральных чисел можно отметить на координатном луче между точками с координатами:

Источник

Понятие о натуральном числе

Натуральные числа и десятичная запись числа

Чтобы сосчитать некоторое количество предметов, используются числа, которые называют натуральными.

С помощью десяти цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 можно записать любое натуральное число. (подобным образом мы используем буквы алфавита, чтобы записать слова)

Такую запись числа называют десятичной десять единиц каждого разряда состав­ляют одну единицу следующего старшего разряда.

Натуральный ряд

Если натуральные числа записать в порядке возрастания, то получится ряд натуральных чисел ‒ натуральный ряд.

Каждое число в этом ряду меньше последующего на единицу. Наи­меньшее число среди натуральных чисел — это 1, а наибольшего числа нет.

Многозначные числа

Натуральное число называют однозначным, если его запись состоит из одного знака — одной цифры.

Например, числа 3, 7, 9 — однозначные.

Если запись числа состоит из двух знаковдвух цифр, то его называют двузначным.

Например, числа 25, 44, 65, 80 — двузначные.

Числа 100, 543, 888 — трёхзначные:

Числа 2000, 6791, 1060 — четырёхзначные и т. д.

Двузначные, трехзначные, четырёхзначные, пятизначные и т. д. — это многозначные числа.

Классы и разряды

Прочитать записи однозначных, двузначных и трехзначных чисел (например: 7, 54, 976) затруднений не вызывает.

Чтобы прочесть многозначное натуральное число, его необходимо разбить справа налево на группы по три цифры в каждой. Крайняя левая группа может состоять из одной или двух цифр.

Эти группы называют классами.

Три первые цифры спра­ва ‒ это класс единиц, три следующие — класс тысяч, затем класс миллионов, класс миллиардов и т. д.

Место, занимаемое цифрой в записи числа, назы­вают разрядом.

Если считать справа налево, то первое место в за­писи числа называют разрядом единиц, второе — разрядом десятков, третье — разрядом сотен и т. д.

Например, в числе 5034 имеем 4 единицы разряда единиц, 3 единицы разряда десятков, 0 единиц раз­ряда сотен и 5 единиц разряда тысяч.

Можно также сказать, что в классе единиц 34 единицы.

Названия некоторых больших чисел

1 тысяча (1 тыс.) – 1 000 (тысяча)

1 миллион (1 млн)1 000 000 (тысяча тысяч)

1 миллиард (1 млрд)1 000 000 000 (тысяча миллионов)

1 триллион (1 трлн)1 000 000 000 000 (тысяча миллиардов)

Рассмотрим число 6 000 126 754.

Его читают: 6 миллиардов 126 тысяч семьсот пятьдесят четыре.

Математика пятый класс что такое натуральные числа. Смотреть фото Математика пятый класс что такое натуральные числа. Смотреть картинку Математика пятый класс что такое натуральные числа. Картинка про Математика пятый класс что такое натуральные числа. Фото Математика пятый класс что такое натуральные числа

В классе миллионов во всех разрядах стоят нули. Поэтому при чтении числа 6 000 126 754 не произносят название этого класса.

Примеры прочтения чисел:

а) Число 200 700 читается так: двести тысяч семьсот;

б) Число 6 000 008 читается так: шесть миллионов восемь;

в) Число 14 000 002 000 читается так: четырнадцать миллиардов две тысячи.

Значение цифры в записи числа

Значение цифры зависит от её позиции (места) в записи числа.

Например, в записи числа 56 978 цифра 8 означает 8 единиц, так как она стоит на последнем месте в записи числа (в разряде единиц);

В записи числа 42 389 цифра 8 означает 8 десятков, так как она стоит на предпоследнем месте в записи числа (в разряде десятков);

В записи числа 5 300 847 цифра 8 означает 8 сотен, так как она стоит на третьем месте от конца в записи числа (в разряде сотен).

Число 0 и цифра 0

Число 0 натуральным не является.

Цифра 0 означает отсутствие единиц данного разряда в десятичной записи числа. Она служит и для обозначения числа «нуль» (что означает ‒ «ни одного»).

(Например, счёт 1 : 0 хоккейного матча говорит о том, что вторая команда не забила ни одной шайбы в ворота противника.)

Поделись с друзьями в социальных сетях:

Источник

Натуральные числа и нуль

Видеоурок по этой теме можно посмотреть по ссылке: Натуральные числа и ноль.

Пройти тест по теме «Натуральные числа и действия над ними» можно по ссылке. Проверьте свои знания!

Нас повсюду окружают предметы. Так было раньше, и так будет всегда. И очень часто необходимо знать, сколько у нас или где-то еще есть тех или иных предметов: яблок, машин, людей, денег и т.д.

Еще в очень глубокой древности, когда не было не только науки математики, но и даже такого понятия как число, древние люди проводили подсчет при помощи наиболее близких для них инструментов – собственных частей тела: «Там столько буйволов, сколько на моих руках пальцев», или: «Мы поймали рыбы столько, сколько пальцев на руках у меня и тебя».

Со временем они заметили, что десять буйволов, десять рыб, десять врагов и т.д. объединяет то, что рассказывая об этом, люди употребляют одинаковое описание: «сколько на моих руках пальцев». То есть, они обнаружили, что группы разных предметов обладают одним схожим свойством – количеством, и что удобнее назвать одинаковое количество чего-либо обобщенным названием, которое будет определять эту величину. И вместо: «Мы поймали столько рыбы, сколько пальцев на моих руках» люди начали говорить: «Мы поймали десять рыб». Так появились числа, которые впоследствии были названы натуральными. Подробнее об истории возникновения чисел можно почитать по ссылке.

Натуральные числа – это те числа, при помощи которых мы осуществляем счет предметов: 1, 2, 3, 4, 5 и т.д

Число 1 (один) имеет еще одно название: единица.

Если к единице приложить еще единицу, к получившемуся результату еще одну, потом еще, и еще и т.д., то мы получим ряд натуральных чисел или просто натуральный ряд: один, два, три, четыре, пять и т.д.

Любое натуральное число можно представить в виде единицы или собрания нескольких единиц.

Начинается натуральный ряд чисел с единицы, то есть, с числа 1 (один).

Каждое последующее число ряда отличается от предыдущего на единицу.

Любое натуральное число больше нуля.

Нуль не относится к натуральному ряду чисел. В некоторых англоязычных странах его включают в этот ряд, но в отечественной математике принято по-другому. Действительно, нуль означает отсутствие чего-либо, «ни одной единицы», «ни одного», «ничего». А поскольку ряд натуральных чисел состоит из единицы и совокупности сложений единиц, то число «ни одной единицы» не может находиться в этом ряду.

Нуль обладает такими свойствами:

Источник

Натуральные числа

Натуральные числа — одно из старейших математических понятий.

В далёком прошлом люди не знали чисел и, когда им требовалось пересчитать предметы (животных, рыбу и т.д.), они делали это не так, как мы сейчас.

Количество предметов сравнивали с частями тела, например, с пальцами на руке и говорили: «У меня столько же орехов, сколько пальцев на руке».

Со временем люди поняли, что пять орехов, пять коз и пять зайцев обладают общим свойством — их количество равно пяти.

Наибольшего натурального числа не существует.

При счёте число ноль не используется. Поэтому ноль не считается натуральным числом.

Затем появились и особые знаки для обозначения чисел — предшественники современных цифр. Цифры, которыми мы пользуемся для записи чисел, родились в Индии примерно 1 500 лет назад. В Европу их привезли арабы, поэтому их называют арабскими цифрами.

Натуральный ряд — это последовательность всех натуральных чисел:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 …

Натуральный ряд бесконечен, наибольшего натурального числа в нём не существует.

Десятичной потому, что 10 единиц каждого разряда образуют 1 единицу старшего разряда. Позиционной потому, что значение цифры зависит от её места в записи числа, то есть от разряда, в котором она записана.

Разряды и классы (включая класс миллионов) подробно разобраны на нашем сайте в материалах для начальной школы.

Класс миллиардов

Если взять десять сотен миллионов, то получим новую разрядную единицу — один миллиард или в записи цифрами.

1 000 миллионов = 1 000 000 000 = 1 млрд

Десять таких единиц — десять миллиардов, десять десятков миллиардов образуют следующую единицу — сто миллиардов.

Миллиарды, десятки миллиардов и сотни миллиардов образуют четвёртый класс — класс миллиардов.

Разряды и классы натурального числа

Рассмотрим натуральное число 783 502 197 048

Название
класса
МиллиардыМиллионыТысячиЕдиницы
Название разрядаСотни миллиардовДесятки миллиардовМиллиардыСотни миллионовДесятки миллионовМиллионыСотни тысячДесятки тысячТысячиСотниДесяткиЕдиницы
Цифра
(символ)
783502197048
Название
класса
МиллиардыМиллионыТысячиЕдиницы
Название разрядаСотни миллиардовДесятки миллиардовМиллиардыСотни миллионовДесятки миллионовМиллионыСотни тысячДесятки тысячТысячиСотниДесяткиЕдиницы
Цифра
(символ)
783502197048

C помощью таблицы разрядов прочитаем это число. Для этого надо слева направо по очереди называть количество единиц каждого класса и добавлять название класса.

Название класса единиц не произносят, также не произносят название класса, если все три цифры в его разрядах — нули.

Любое натуральное число можно записать в виде разрядных слагаемых.

Числа 1, 10, 100, 1000 … называются разрядными единицами. С их помощью натуральное число записывается в виде разрядных слагаемых. Так, например, число 307 898 будет выглядеть в виде разрядных слагаемых.

307 898 = 300 000 + 7 000 + 800 + 90 + 8

Проверить свои вычисления вы можете с помощью нашего калькулятора разложения числа на разряды онлайн.

Следующие за миллиардом классы названы в соответствии с латинскими наименованиями чисел. Каждая следующая единица содержит тысячу предыдущих.

Все числа пересчитать невозможно, поскольку за каждым числом следует число на единицу большее, но очень большие числа в повседневной жизни не нужны.

Однако, физики нашли число, которое превосходит количество всех атомов (мельчайших частиц вещества) во всей Вселенной.

Это число получило специальное название — гугол. Гугол — число, у которого 100 нулей.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *