Монетку бросили 3 раза какова вероятность того что орел выпадет 2 раза
Монетку бросили 3 раза какова вероятность того что орел выпадет 2 раза
В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел выпадет ровно два раза.
Обозначим выпадение орла буквой О, а выпадение решки буквой Р. Возможных восемь исходов:
OOO, OОР, ОРО, ОРР, РОО, РОР, РРО, РРР
Из них благоприятными являются OОР, ОРО и РОО. Поэтому искомая вероятность равна то есть 0,375. (Этот подход затруднителен в случае большого числа бросаний монетки.)
Приведем другое решение.
Каждое бросание с равной вероятностью может дать орел или решку, поэтому для трех бросаний равновозможны различных вариантов. Орел выпадает ровно два раза в трех случаях: орел-решка-орел, решка-орел-орел, орел-орел-решка. Поэтому вероятность этого события
Приведем решение, основанное на комбинаторных формулах.
Общее количество различных вариантов описывается формулой для размещений с повторениями: Количество способов получить ровно три орла дается перестановками с повторениями Искомая вероятность равна отношению благоприятных случаев ко всем возможным:
Приведем решение, использующее теоремы о вероятностях.
Возможны три варианта: орел-орел-решка, орел-решка-орел, решка-орел-орел. Эти события несовместные, вероятность их суммы равна сумме вероятностей этих событий:
Вероятность выпадения монетки одной стороной и дважды — другой стороной равна 0,5·0,5·0,5 = 0,125. Выбрать из этих «трех» сторон два орла можно способами. Следовательно, искомая вероятность равна 0,375.
Примечание. Последнее рассуждение — не что иное, как вывод формулы Бернулли для нашего случая. В общем случае, если проводится n испытаний, в каждом из которых некоторое событие наступает в вероятностью p, то вероятность наступления этого события ровно k раз дается формулой
Монетку бросили 3 раза какова вероятность того что орел выпадет 2 раза
В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел выпадет ровно два раза.
Обозначим выпадение орла буквой О, а выпадение решки буквой Р. Возможных восемь исходов:
OOO, OОР, ОРО, ОРР, РОО, РОР, РРО, РРР
Из них благоприятными являются OОР, ОРО и РОО. Поэтому искомая вероятность равна то есть 0,375. (Этот подход затруднителен в случае большого числа бросаний монетки.)
Приведем другое решение.
Каждое бросание с равной вероятностью может дать орел или решку, поэтому для трех бросаний равновозможны различных вариантов. Орел выпадает ровно два раза в трех случаях: орел-решка-орел, решка-орел-орел, орел-орел-решка. Поэтому вероятность этого события
Приведем решение, основанное на комбинаторных формулах.
Общее количество различных вариантов описывается формулой для размещений с повторениями: Количество способов получить ровно три орла дается перестановками с повторениями Искомая вероятность равна отношению благоприятных случаев ко всем возможным:
Приведем решение, использующее теоремы о вероятностях.
Возможны три варианта: орел-орел-решка, орел-решка-орел, решка-орел-орел. Эти события несовместные, вероятность их суммы равна сумме вероятностей этих событий:
Вероятность выпадения монетки одной стороной и дважды — другой стороной равна 0,5·0,5·0,5 = 0,125. Выбрать из этих «трех» сторон два орла можно способами. Следовательно, искомая вероятность равна 0,375.
Примечание. Последнее рассуждение — не что иное, как вывод формулы Бернулли для нашего случая. В общем случае, если проводится n испытаний, в каждом из которых некоторое событие наступает в вероятностью p, то вероятность наступления этого события ровно k раз дается формулой
Бросание монет. Решение задач на нахождение вероятности
Кстати, сразу упомяну, что в контексте подобных задач не существенно, написать «бросают 3 монеты» или «бросают монету 3 раза», результат (в смысле вычисления вероятности) будет один и тот же (так как результаты бросков независимы друг от друга).
1. Классическое определение вероятности
Пример 1. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет ровно один раз.
Пример 2. Дважды бросают симметричную монету. Найти вероятность того, что оба раза выпала одна сторона.
Как видим, все довольно просто. Перейдем к чуть более сложной задаче.
Пример 3. В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел выпадет ровно два раза.
Взяли разгон и переходим к 4 монетам.
Пример 4. Монету бросают 4 раза. Найти вероятность того, что герб выпадет от 2 до 3 раз.
Думаю, к этому времени вы уже поняли суть метода и сможете сами решить задачи, где бросаются 2-3-4 монеты и орел не выпадает ни разу, или решка ровно один раз и т.п.
2. Комбинаторика + классическая вероятность
Пример 4. Монету бросают 4 раза. Найти вероятность того, что герб выпадет от 2 до 3 раз.
Конечно, этот подход кажется сложнее из-за более формального математического описания решения, но гораздо легче масштабируется.
Например, если рассмотреть подобную задачу:
Пример 5. Монету бросают 8 раз. Найти вероятность того, что герб выпадет ровно 4 раза
Ради полноты изложения приведу еще пример задачи, решаемой подобным образом (но если хотите, можете сразу переходить к более простому способу 3).
Пример 6. Монету подбрасывают 6 раз. Найти вероятность того, что гербы выпадут два раза и только подряд, а в остальные разы будут только решки.
Способ 3. Формула Бернулли
А теперь все задачи решаются проще простого, вот глядите!
Пример 1. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет ровно один раз.
Пример 4. Монету бросают 4 раза. Найти вероятность того, что герб выпадет от 2 до 3 раз.
Пример 7. В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел не выпадет ни разу.
Пример 8. Пусть бросают 8 монет. Найти вероятность того, что орел не менее 7 раз.
Таким образом, используя одну простейшую формулу, можно решать множество задач, причем неважно, 3 монеты бросается, или 30, сложность расчетов примерно одинакова. Но, если число бросков становится очень большим, удобнее использовать приближенные формулы Муавра-Лапласа, о которых можно узнать здесь.
Полезные ссылки
Решебник по вероятности
А здесь вы найдете более 200 задач о бросании монет с полными решениями (вводите часть текста для поиска своей задачи):
Монетку бросили 3 раза какова вероятность того что орел выпадет 2 раза
Задача 1. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет ровно один раз.
Общее число равновозможных комбинаций может быть четыре:
«орел-орел», «орел-решка», «решка-орел», «решка-решка».
Из них благоприятных исходов по условию задачи два – это «орел-решка» и «решка-орел». Следовательно, искомая вероятность, равна
.
Задача 2. В случайном эксперименте симметричную монету бросают три раза. Найдите вероятность того, что решка выпадет ровно 2 раза.
1-й способ: Решать эту задачу можно аналогично предыдущей. Всего исходов может быть 8:
Благоприятных исходов по условию задачи 3 – это «орел-решка-решка», «решка-орел-решка», «решка-решка-орел». И искомая вероятность равна
.
2-й способ. В рамках данной задачи общее число исходов можно определить по формуле
,
где — число подбрасываний монеты (в данном случае ), а 2 – число возможных исходов при подбрасывании монеты (либо «орел», либо «решка»). Таким образом, сразу получаем число исходов .
Число благоприятных исходов можно определить по формуле
,
где — число выпадения «решки» из подбрасываний. В данной задаче и
.
В итоге получаем искомую вероятность
.
Второй способ может существенно сократить время на решение подобных задач, особенно когда речь идет о четырех и более подбрасываний монеты. В этом случае перебирать все варианты и не ошибиться становится трудно, и применение указанных формул существенно облегчает задачу.
Задача 3. В случайном эксперименте монету бросают трижды. Найдите вероятность того, что решка выпадет ровно три раза.
В данной задаче имеется только один благоприятный исход из восьми равновероятных исходов:
Следовательно, искомая вероятность равна
.
Общее число исходов также можно определить по формуле , приведенной в предыдущей задаче.
Задача 4. Перед началом футбольного матча судья бросает монетку, чтобы определить, какая из команд начнет игру с мячом. Команда «Изумруд» играет три матча с разными командами. Найдите вероятность того, что в этих играх «Изумруд» выиграет жребий ровно один раз.
Будем считать, что выпадение «орла» соответствует началу игры мячом команды «Изумруд». Тогда задача сводится к определению вероятности выпадения «орла» ровно один раз из трех бросаний монеты.
Всего исходов 8 (см. предыдущие задачи). Из них «орел» выпадет ровно один раз в вариантах – это случаи: «орел-решка-решка», «решка-орел-решка», «решка-решка-орел». Следовательно, искомая вероятность равна
.