Монету бросают 3 раза подряд какова вероятность что каждый раз выпадет решка
Бросание монет. Решение задач на нахождение вероятности
Кстати, сразу упомяну, что в контексте подобных задач не существенно, написать «бросают 3 монеты» или «бросают монету 3 раза», результат (в смысле вычисления вероятности) будет один и тот же (так как результаты бросков независимы друг от друга).
1. Классическое определение вероятности
Пример 1. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет ровно один раз.
Пример 2. Дважды бросают симметричную монету. Найти вероятность того, что оба раза выпала одна сторона.
Как видим, все довольно просто. Перейдем к чуть более сложной задаче.
Пример 3. В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел выпадет ровно два раза.
Взяли разгон и переходим к 4 монетам.
Пример 4. Монету бросают 4 раза. Найти вероятность того, что герб выпадет от 2 до 3 раз.
Думаю, к этому времени вы уже поняли суть метода и сможете сами решить задачи, где бросаются 2-3-4 монеты и орел не выпадает ни разу, или решка ровно один раз и т.п.
2. Комбинаторика + классическая вероятность
Пример 4. Монету бросают 4 раза. Найти вероятность того, что герб выпадет от 2 до 3 раз.
Конечно, этот подход кажется сложнее из-за более формального математического описания решения, но гораздо легче масштабируется.
Например, если рассмотреть подобную задачу:
Пример 5. Монету бросают 8 раз. Найти вероятность того, что герб выпадет ровно 4 раза
Ради полноты изложения приведу еще пример задачи, решаемой подобным образом (но если хотите, можете сразу переходить к более простому способу 3).
Пример 6. Монету подбрасывают 6 раз. Найти вероятность того, что гербы выпадут два раза и только подряд, а в остальные разы будут только решки.
Способ 3. Формула Бернулли
А теперь все задачи решаются проще простого, вот глядите!
Пример 1. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет ровно один раз.
Пример 4. Монету бросают 4 раза. Найти вероятность того, что герб выпадет от 2 до 3 раз.
Пример 7. В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел не выпадет ни разу.
Пример 8. Пусть бросают 8 монет. Найти вероятность того, что орел не менее 7 раз.
Таким образом, используя одну простейшую формулу, можно решать множество задач, причем неважно, 3 монеты бросается, или 30, сложность расчетов примерно одинакова. Но, если число бросков становится очень большим, удобнее использовать приближенные формулы Муавра-Лапласа, о которых можно узнать здесь.
Полезные ссылки
Решебник по вероятности
А здесь вы найдете более 200 задач о бросании монет с полными решениями (вводите часть текста для поиска своей задачи):
Орел или решка?
Человек должен мыслить вероятностно. Просто потому, что наш мир так устроен, что каждое событие происходит с той или иной степенью вероятности. И этот «железобетонный» факт нужно всегда принимать во внимание.
Заметьте, что это не вполне перекрывается с диалектичностью мышления. Разница в том, что диалектика описывает любую ситуацию, как совокупность разнонаправленных факторов (что, безусловно, влияет на вероятность того или иного исхода). Тогда ситуация — суть синтез этих факторов в данный конкретный момент.
Вероятность же — понятие математическое. Классическим примером является подбрасывание монетки. Может выпасть «орел», а может «решка». Поскольку сторон у монетки всего две, то вероятность выпадения «орла» составляет 1/2 или 0,5.
Есть несколько очень важных моментов, входящих в понятие «вероятностное мышление», которые на примере с монеткой можно продемонстрировать.
Вначале о двух принципиально разных вариантах: а) когда вероятность всей последовательности событий или элементов системы влияет на результат; б) когда то, что было до очередного события – неважно.
Рассмотрим первый вариант (напомню, когда вероятность всей последовательности событий или поведения элементов системы влияет на результат).
Какова вероятность выпадения «орла» 2 раза подряд? Правильно, 0,5*0,5=0,25. Т.е. в 2 раза меньше, чем вероятность выпадения «орла» в одной-единственной попытке.
Это очень важный момент, который нужно научиться видеть и понимать в любой системе. Допустим, возьмем большой пассажирский самолет. В нем многие тысячи деталей и механизмов. Часть из них является критически важными — т.е. такими, поломка или отказ которых приведет к катастрофе. Допустим, что таких деталей 1000 штук. Вероятность отказа каждой детали в отдельности достаточно низка. Уже потому, что их конструировали и изготавливали профессионалы. Допустим, что надежность каждой детали из 1000 составляет 0,999. Заметьте, что это весьма высокая надежность!
Но на исход полета (надежность самолета в целом) влияют все 1000 деталей! Поэтому, надежность самолета в целом будет оцениваться как 0,999 в степени 1000. Это значение равно 0,375 по моему калькулятору. Что такая цифра означает в жизни? Самолет упадёт с вероятностью 1-0.368=0.632, т.е. больше чем в половине случаев [спасибо коллеге NIN за поправку]. Вы согласились бы лететь на таких условиях. (В скобках замечу, что для повышения надежности технических систем уже давно разработаны специальные методы.)
Но это «железяки». А теперь представьте, что вы выстраиваете цепочку сделок с 5 контрагентами. При этом каждому участнику вы доверяете (иначе зачем ввязываться в откровенно сомнительную авантюру?) на 80%. Тогда вероятность успешного окончания сделки 0,8 в 5-ой степени – это 0,328, т.е. чуть выше 30%. Вы готовы рискнуть своими деньгами на таких условиях?
Теперь вариант №2, когда вероятность всей последовательности событий или поведения элементов системы не влияет на результат очередной попытки.
Допустим, вы подбросили монетку 10 раз — и все десять раз выпала «решка». Ну чего не случается в жизни, правда?! Вы бросаете 11-й раз. Вопрос: какова вероятность того, что выпадет снова «решка»?
Правильный ответ (до которого я сам в свое время не додумался, честно признаюсь) — 0,5! Хотя очень хочется сказать 0,5 в 11 степени, т.е. 0,00049.
Дело в том, что монетка «не знает», как она падала в предыдущие «разы». Для нее в каждой отдельной попытке есть только 2 варианта, причем вероятность каждого составляет 0,5.
В жизни очень важно уметь видеть такие ситуации, которые «работают» по такому вот «независимому» механизму – и отличать их от «зависимых» (т.е. таких, в которых вероятность накапливается).
Обратите внимание, что ошибка (разница) в оценках в этом примере составляет 1000 раз. Т.е. мы скромно так ошиблись на 3 порядка. Даже некорректно использовать термин «ошиблись» — мы просто не в курсе дела, что называется. Это к вопросу о важности различения типов ситуаций по жизни.
Завершая разговор об этих двух различных вариантах, можно упомянуть о том, что в терминах философии сказанное означает, что между событиями в первом случае есть, а во втором случае нет причинно-следственной связи.
В самом деле, в первом случае условием выполнения задачи являются все исходы подбрасываний монетки. Например, если во второй попытке выпала «решка» — то результата «5 орлов подряд» уже не достичь, верно? Во втором случае исходы предыдущих попыток никак не влияют на исход любой последующей.
Учет маловероятных событий и граничных условий
Есть еще один аспект темы «Орел или решка?» Записные остряки иногда шутят, что возможны еще 2 варианта:
В каждой ситуации (в т.ч. жизненной) есть свой главный вопрос. В ситуации с падением монетки на ребро это: а какова вероятность того, что будет именно такой исход?
Здесь вы можете остановиться и сделать 100 или 1000 подбрасываний монетки. Я не шучу, это очень важный момент. Ведь речь о том, что для конкретного мышления нужен практический опыт. Вот вы и можете на своем опыте попытаться добиться ситуации, чтобы монетка стала на ребро…
… Надеюсь, вы уже накидались вдоволь и мы можем продолжить. Подозреваю, что даже в 1000 попыток монетка ни разу не встала на ребро. Хотя рукой, действуя очень осторожно и тщательно, мы можем ее в такое положение поместить, правда? Т.е. какая-то конечная вероятность существует.
Для целей нашего разговора главный вывод из этого упражнения заключается в двух вещах:
• в большинстве случаев, когда одно событие имеет вероятность в 10 и более раз выше, чем иное событие, вторую альтернативу из рассмотрения можно исключить (обычно разницу на порядок величины и более называют «качественной»);
• в тоже время важно помнить, что мы всегда имеем дело с вероятностными процессами. И что исключили мы на этапе анализа тот или иной вариант не потому, что он невозможен в принципе, а потому что он маловероятен, а возможная «цена» такого исхода не запредельно велика для нас. Если же на кону жизнь или состояние – тогда нужно еще разок подумать, а можно ли пренебречь даже такой небольшой вероятностью негативного исхода…
Важно четко отдавать себе отчет в том, для чего и какой именно анализ вы делаете, быть адекватным и профессиональным.
Еще немного об учете граничных условий
Пример с монеткой, повисшей в воздухе, указывает на важность учета условий, в которых протекает тот или иной процесс. Всегда нужно отдельным пунктом четко прояснить граничные условия задачи, которую вам предлагают решить (действовать, работать). Кстати, классический пример такой ситуации – это Александр Македонский и «гордиев узел». Как известно, он не стал его развязывать, он его просто разрубил. При этом, не суть важно, были заданы условия или нет, т.к. оба варианта одинаково полезно обдумать: а) можно воспользоваться неопределенностью граничных условий или б) можно сознательно выйти за границы заданных условий, поскольку — оставаясь в них — задачу не решить.
Далее, есть такая фраза: «С ним я бы в разведку не пошел». В чем ее суть с точки зрения вероятности? В ней на основе наблюдения за поведением данного человека делается некий прогноз о его возможных действиях в экстремальных условиях разведывательной операции (т.е. о вероятности того или иного исхода в иных граничных условиях).
Причем логика такова: если в повседневной жизни в поведении данного индивида есть настораживающие моменты — то как же он поведет себя, когда его «жареный петух в одно место клюнет»?!
Вывод прост: если вы принципиально меняете условия проведения того или иного опыта — то вы должны быть готовы к тому, что результаты, полученные в исходных условиях, будут откровенно ненадежными. Т.е. вероятностное распределение исходов резко изменится.
Очень важно четко осознавать граничные условия задачи.
О различиях между априорной и апостериорной оценками
Из вероятностного характера большинства событий вытекает принципиальная разница между т.н. априорной и апостериорной оценкой. Т.е. оценкой до и после события.
До полета можно априори заявить, что он обязательно будет успешным? Можно, но это будет абсолютно некорректно, т.к. конечная вероятность неблагоприятного исхода существует всегда. Зато после полета вы можете сказать что-то вроде «Да я и не сомневался, потому что вероятность неуспеха была ничтожно мала. »
Самая же большая разница в таких оценках — разница психологическая. Вы это легко поймете, когда вспомните свое состояние до полета и после того, как самолет коснулся колесами земли.
Это, вообще-то очень небанальный вывод, хотя на первый взгляд может показаться именно таким. Вы легко поймете его важность, если вспомните, как люди, научившись что-то делать (например, фотографировать), потом говорят с нарочитой небрежностью: «Легко. » Так вот, это и есть апостериорная оценка и при этом человек уже «забыл», что никакой гарантии такого исхода ведь не было, была лишь вероятность. А для человека, который еще этому не научился, она выглядит издевкой, причем абсолютно непонятной и от этого еще более обидной. Обидной еще и потому, что совершенно не факт, что в его случае факторы сойдутся в нужной конфигурации и он тоже совершит этот качественный скачок. Фотографируют тысячи, а фотографами становятся единицы.
Важно помнить, что то, что для вас является апостериорным – для других является априорным. Они смотрят на эту задачу с другой стороны, они еще не знают о ней того, что знаете вы…
Проявлением «вероятностного мышления» у вас в голове должно служить численная оценка вероятности того или иного события. Т.е. вы должны помыслить, к примеру, так: «оценка вероятности неблагоприятного исхода 0,1, а это уже серьезно и для меня неприемлемо». Но никак не «авось, этого не произойдет».
Я затронул только малую часть того, что я называю «вероятностным мышлением». Это большая область, которую желательно изучить, осознать и приобрести необходимые автоматические навыки (в т.ч. выполнения всех видов оценки).
Главное же, ради чего я решил написать это небольшое эссе, заключается в напоминании о том, что состояние неопределенности (и вероятность, как мера неопределенности) — это неотъемлемое условие, атрибут человеческого существования, нашей жизни. Повысить определенность формально возможно и это нужно стараться делать. К сожалению, почти всегда такие попытки связаны либо с необоснованно высоким расходом сил, либо отсутствием времени. Самые же важные процессы в нашей жизни неопределенны принципиально, в силу своей исключительной сложности и многофакторности. В результате наиболее существенные наши решения всегда принимаются в условиях недостатка информации, когда вероятность успеха отнюдь не так велика, как нам бы хотелось думать. И у нас нет иного выхода, как попытаться научиться спокойно к этому относиться и быть достаточно эффективным и в таких условиях.
P.S. Чтобы не заканчивать на пафосно-назидательной ноте, напомню классический анекдот про «вероятностное мышление» в неумелом исполнении:
— Какова вероятность того, что завтра наступит конец света?
— 50%, потому что либо наступит, либо нет…