Монету бросают трижды какова вероятность того что орел выпадет 3 раза
Монету бросают трижды какова вероятность того что орел выпадет 3 раза
В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел выпадет ровно два раза.
Обозначим выпадение орла буквой О, а выпадение решки буквой Р. Возможных восемь исходов:
OOO, OОР, ОРО, ОРР, РОО, РОР, РРО, РРР
Из них благоприятными являются OОР, ОРО и РОО. Поэтому искомая вероятность равна то есть 0,375. (Этот подход затруднителен в случае большого числа бросаний монетки.)
Приведем другое решение.
Каждое бросание с равной вероятностью может дать орел или решку, поэтому для трех бросаний равновозможны различных вариантов. Орел выпадает ровно два раза в трех случаях: орел-решка-орел, решка-орел-орел, орел-орел-решка. Поэтому вероятность этого события
Приведем решение, основанное на комбинаторных формулах.
Общее количество различных вариантов описывается формулой для размещений с повторениями: Количество способов получить ровно три орла дается перестановками с повторениями Искомая вероятность равна отношению благоприятных случаев ко всем возможным:
Приведем решение, использующее теоремы о вероятностях.
Возможны три варианта: орел-орел-решка, орел-решка-орел, решка-орел-орел. Эти события несовместные, вероятность их суммы равна сумме вероятностей этих событий:
Вероятность выпадения монетки одной стороной и дважды — другой стороной равна 0,5·0,5·0,5 = 0,125. Выбрать из этих «трех» сторон два орла можно способами. Следовательно, искомая вероятность равна 0,375.
Примечание. Последнее рассуждение — не что иное, как вывод формулы Бернулли для нашего случая. В общем случае, если проводится n испытаний, в каждом из которых некоторое событие наступает в вероятностью p, то вероятность наступления этого события ровно k раз дается формулой
Монету бросают трижды какова вероятность того что орел выпадет 3 раза
В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел выпадет ровно два раза.
Обозначим выпадение орла буквой О, а выпадение решки буквой Р. Возможных восемь исходов:
OOO, OОР, ОРО, ОРР, РОО, РОР, РРО, РРР
Из них благоприятными являются OОР, ОРО и РОО. Поэтому искомая вероятность равна то есть 0,375. (Этот подход затруднителен в случае большого числа бросаний монетки.)
Приведем другое решение.
Каждое бросание с равной вероятностью может дать орел или решку, поэтому для трех бросаний равновозможны различных вариантов. Орел выпадает ровно два раза в трех случаях: орел-решка-орел, решка-орел-орел, орел-орел-решка. Поэтому вероятность этого события
Приведем решение, основанное на комбинаторных формулах.
Общее количество различных вариантов описывается формулой для размещений с повторениями: Количество способов получить ровно три орла дается перестановками с повторениями Искомая вероятность равна отношению благоприятных случаев ко всем возможным:
Приведем решение, использующее теоремы о вероятностях.
Возможны три варианта: орел-орел-решка, орел-решка-орел, решка-орел-орел. Эти события несовместные, вероятность их суммы равна сумме вероятностей этих событий:
Вероятность выпадения монетки одной стороной и дважды — другой стороной равна 0,5·0,5·0,5 = 0,125. Выбрать из этих «трех» сторон два орла можно способами. Следовательно, искомая вероятность равна 0,375.
Примечание. Последнее рассуждение — не что иное, как вывод формулы Бернулли для нашего случая. В общем случае, если проводится n испытаний, в каждом из которых некоторое событие наступает в вероятностью p, то вероятность наступления этого события ровно k раз дается формулой
Симметричную монету бросают трижды. а) Найдите вероятность того, что орел выпадет ровно один раз. б) Найдите вероятность того, что решка выпадет хотя бы один раз.
Чтобы найти вероятность, надо благоприятные события разделить на всевозможные.
Всевозможных событий здесь 8.
1 раз | 2 раз | 3 раз |
Р | Р | Р |
Р | Р | О |
Р | О | Р |
Р | О | О |
О | Р | Р |
О | Р | О |
О | О | Р |
О | О | О |
а) Орел выпадает единожды в трех случаях: РРО, РОР, ОРР.
Находим вероятность: Р = 3 : 8 = 0,375.
б) Как минимум один раз решка выпадает в 7 случаях.