Можно ли наблюдая за звездным небом доказать что земля вращается
Как узнать, что Земля вращается?
Физики могут объяснить даже то,
что невозможно представить.
Л. Ландау
Была такая задача на школьной олимпиаде по астрономии и физике космоса: «Как узнали бы люди, что Земля имеет форму шара, что она вращается вокруг оси, проходящей через её центр и что Земля обращается вокруг Солнца по определённой траектории (причём в декабре расположена ближе к Солнцу, чем в июне), если бы она была покрыта густым слоем облаков так, что даже Солнца не было бы видно?»
Что Земля имеет форму шара, люди знали ещё в древности. Аристарх (310–230 до н. э.) нашёл, во сколько раз Солнце дальше от Земли, чем Луна, и по лунным затмениям сравнил размеры Земли и Луны. Расстояние до Луны нашли, решив прямоугольный треугольник, где сторонами были радиус Земли – первый катет, второй катет – расстояние до Луны в момент когда Луна на горизонте, и гипотенуза – радиус плюс расстояние в тот же момент, когда Луна над головой. Аристарх же и первый высказался о вращении Земли в виде философского рассуждения.
По Эратосфену (276–196 до н. э.), шарообразность Земли следовала из изменения полуденной высоты Солнца и высоты звёзд в верхней кульминации при передвижении с юга на север, т. е. по меридиану. Мало того, уже в то время можно было измерить радиус Земли в шагах верблюда! Два купца договариваются об измерении высоты Солнца в полдень в один и тот же день в городах Сиена и Мемфис, но желательно, когда Солнце в Сиене находится в зените (или определённая звезда в верхней кульминации). Эти города находятся почти на одном меридиане (так удачное течение реки Нил повлияло на развитие науки), а расстояние между ними, предположим, 750 000 шагов верблюда (будем считать, что шаг верблюда приблизительно равен 1 м). Разность высот φ = 31° 11′ – 24° 5′ = 7° 6′, тогда из формулы l = Rφ, где l – длина дуги окружности радиуса R, опирающейся на угол φ, находим R = l/φ. Произведя вычисления (угол φ выражаем в радианах), получаем R = 750 000/(7,1/57,3) = 500 000 · 57,3/6,8 = 6 052 000 м.
При точности измерений того времени радиус Земли у Эратосфена получился 7000 км. (В то время расстояния измеряли стадиями. Радиус Земли у древних греков получился приблизительно 40 000 стадий. Возникает задача: сколько метров в одной стадии? Была и такая задача на олимпиаде по астрономии и физике космоса.)
Косвенно кругосветное путешествие Ф. Магеллана (1480–1521) доказало и шарообразность Земли, и её вращение Земли с запада на восток. Г. Галилей (1564–1642) в своё время писал о семи доказательствах вращения Земли вокруг своей оси, но все они были неверными (два из них он называл доказательствами, а остальные пять – подтверждениями).
Ещё И. Ньютон (1642–1723) указал, что падающее тело должно отклонятся к востоку (при точном решении – к юго-востоку в Северном полушарии). Р. Гук (1635–1703) пытался доказать это экспериментально, но точность эксперимента оказалась слишком низкой. В XIX в. в Германии несколько учёных провели успешный эксперимент с вполне удовлетворительными погрешностями: Ф. Бенценберг в 1802 г. (высота 85 м, отклонение 11,5 мм) и Ф. Рейх (высота 158 м, отклонение 28,5 мм). Задача в общем виде была поставлена ещё до выхода «Начал натуральной философии» (1687) Ньютона французом Мерсенном (1588–1648). На гравюре П. Вариньона из книги «Соображения о причине тяжести» (1690), изображён опыт Мерсенна и Пти (военного инженера, которого привлёк Мерсенн). Мерсенн в одежде монаха ставит вопрос (надпись на французском языке): «Вернётся ли назад?» Только в XIX в. такой эксперимент дал удовлетворительное согласие с теорией.
Точное решение (для небольших скоростей, т. е. для высот, где ускорение свободного падения изменяется мало) можно найти в «Курсе теоретической физики» Ландау и Лифшица [1], но эти решения ученикам недоступны. Даже известный популяризатор науки Я. Перельман (1882–1942) сделал несколько ошибок при решении этой задачи. А вот для скоростей, близких к первой космической скорости (и для высот подъёма, сравнимых с радиусом Земли), эта задача имеет вполне доступное для учащихся решение.
Ещё одно решение с приблизительно таким же ответом (1226 км) приводит Е. Мищенко [3]. Смещение снаряда к западу у него:
Наглядно доказывает вращение Земли маятник Фуко, а косвенно – закон Бэра (крутые правые берега рек в Северном полушарии). Оригинальный способ доказательства вращения Земли вокруг своей оси приводит
Дж. Литлвуд (1885–1977). Нужно взять тор из стекла, наполнить его водой в положении, когда плоскость тора перпендикулярна отвесу и резко повернуть тор в вертикальной плоскости. Вода внутри тора начнёт двигаться (в Северном полушарии Земли – против часовой стрелки, если дальнюю от нас сторону тора поднять вверх). Литлвуд пишет: «Это могло быть изобретено Архимедом (287–212 до н. э.), но должно было ждать своего открытия до 1930 г.». Автором идеи является лауреат Нобелевской премии А. Комптон (1892–1962).
В настоящее время доказано, что и угловая скорость вращения Земли была когда-то больше, и сутки миллионы лет назад составляли около 8 ч. Ещё П.-С. Лаплас (1749–1827) в своём «Трактате о небесной механике» писал об этом. По древним источникам известно, что 15 апреля 136 г. до н. э. в Древнем Вавилоне наблюдалось солнечное затмение. Если сделать расчёт, исходя из равномерности вращения Земли, то окажется, что действительно в этот день должно было быть затмение, но не в Вавилоне, а в местности, находящейся на 49° западнее. То есть угловое смещение полосы затмения вызвано изменением угловой скорости Земли. По этим данным возникает задача об угловом ускорении вращения Земли.
Исторически первым наглядным и убедительным экспериментом, подтвердившим вращение Земли вокруг своей оси, был опыт Л. Фуко (1819–1868). Он весьма наглядно подтвёрждает, что, строго говоря, система наблюдателя, связанного с вращающейся Землёй, неинерциальна, главным образом вследствие наличия этого вращения. Представим себе маятник, качающийся на Северном полюсе Земли. Во вращающейся системе наблюдается ускорение Кориолиса. Сила Кориолиса, как показывает расчёт, направлена перпендикулярно к оси вращения и скорости наблюдателя, находящегося во вращающейся системе, и равна –2m [ω υ], т. е. пропорциональна векторному произведению угловой скорости и относительной скорости движения тела в неинерциальной системе отсчёта, жёстко связанной с Землёй. Она обращается в нуль, когда точка покоится по отношению к наблюдателю, находящемуся во вращающейся системе (υ = 0), или когда движение точки направлено для этого наблюдате ля параллельно оси вращения ω || υ.
При толчке, сообщённом маятнику в положении равновесия в точке, находящейся точно над северным полюсом, где вектор угловой скорости направлен точно на нас, ускорение Кориолиса (по правилу нахождения направления векторного произведения) направлено вправо в горизонтальной плоскости, одновременно перпендикулярно скорости маятника и угловой скорости вращения Земли и несколько отклонит путь маятника вправо, если смотреть сверху (с точки зрения наблюдателя, вращающегося с Землёй). В точке наибольшего удаления маятника от положения равновесия модуль силы Кориолиса Fк равен нулю. Плоскость качания маятника сохраняется по отношению к инерциальной системе небесного свода, но поворачивается для вращающегося на блюдателя, поэтому маятник в этой точке описывает петлю. Никаким неудачным толчком нельзя объяснить такую траекторию маятника, но она получает полное объяснение, если принять во внимание силы инерции, обусловленные вращением Земли. Если же отпустить маятник в положении максимального отклонения, то траектория движения будет несколько отличаться от изображённой, – она примет вид нескольких петель, но уже не проходящих через точку полюса.
При скоростях летящего камня можно не учитывать влияния этой силы, она и не могла быть обнаружена в опытах Галилея. Существует много явлений, которые объясняются действием силы Кориолиса, которая возникает из-за вращения Земли. Артиллеристы должны учитывать её, т. к. при больших дальностях полёта снаряда даже малое ускорение даёт значительное смещение точки попадания. На железных дорогах при движении по колее только в одном направлении в Северном полушарии сильнее изнашивается правый рельс. При движении жидкости и газа по трубам также существует разность давлений на стороны трубы. Гораздо более значительными являются действия силы Кориолиса на морские течения: отклонение Гольфстрима (вправо), а также течений, связанных с приливами и отливами в Cеверном полушарии. Очень сильно влияние силы Кориолиса проявляется в атмосфере. Ветер дует строго в направлении падения давления только на экватор и значительно отклоняется в Cеверном полушарии вправо от него, а в Южном полушарии – влево.
Важным примером действия силы Кориолиса является размывание одного берега реки, текущей в меридиональном направлении. в Северном полушарии вектор силы Кориолиса направлен на восток, если река течёт на север, и на запад, если река течёт с севера на юг. В обоих случаях этот вектор направлен с левого берега реки на правый, т. е. размывается правый берег, а левый остаётся крутым. В Южном же полушарии размываются левые берега рек. Наконец, на экваторе ускорение Кориолиса равняется нулю, потому что ω и v параллельны. Эти явления были открыты в 1857 г. членом Петербургской Академии наук К.М. Бэром (1792–1876) и получили название закона Бэра.
Этот закон можно объяснить и с точки зрения наблюдателя, находящегося в инерциальной системе отсчёта. Если река течёт с севера на юг в Северном полушарии, то каждая единица массы воды удаляется от оси вращения Земли и, следовательно, вода приходит в северных широтах с недостатком количества движения в направлении с запада на восток. Вращающаяся Земля при этом должна ускорять воду в её движении с запада на восток. Очевидно, что в силу инерции воды это приведёт к давлению потока на западный, т. е. на правый берег.
Существует простой опыт, который наглядно демонстрирует суточное вращение Земли. Нужно подвесить на тонком шнуре сосуд с водой с тонким отверстием внизу, чтобы вода вытекала довольно долго, например, бутылку из-под минеральной воды с возможностью регулирования расхода. Сосуд начнёт поворачиваться то в одну, то в другую сторону, но вначале – всегда – в сторону вращения Земли (против часовой стрелки, если смотреть сверху). Этот опыт служит косвенным доказательством вращения Земли вокруг своей оси.
Таким образом, опытами на самой Земле мы можем установить её вращение относительно инерциальной системы координат. Труднее дело обстоит с доказательством обращения Земли вокруг Солнца. У нас имеются только несколько фактов: изменение длины дня в течение года, более холодные зимы в Южном полушарии, смена времён года. Может быть, с помощью изощрённых рассуждений как-то и можно прийти к правильному выводу. И даже при прозрачной атмосфере прямое экспериментальное доказательство обращения Земли вокруг Солнца было получено почти через двести лет после Г. Галилея. Английский учёный Д. Брадлей (1693–1762) открыл явление годичной абберации звёзд в 1727 г. Это было первое прямое доказательство движения Земли вокруг Солнца, т. е. доказательство истинности учения Коперника и Галилея. Годичные параллактические смещения были измерены в 1838 г., когда русский астроном В.Я. Струве (1793–1864) определил расстояние до Веги – самой яркой звезды северного полушария небесной сферы.
Древние шумеры в третьем тысячелетии до н. э. определяли начало нового года по дню весеннего равноденствия в момент вступления Солнца в созвездие Тельца. И уже в Древней Греции Гиппарх (190–125 гг. до н. э.) мог сделать вывод не только об обращении Земли вокруг Солнца и её собственном вращении, но и о прецессии (предварение равноденствий) – мутации оси вращения Земли. Уже тогда был известен так называемый год Платона (428–327 до н. э.), равный приблизительно 26 000 лет. Через этот период точка весеннего равноденстви возвращается в прежнее положение. Если разделить 26 000 на 12 получится так называемая эра, которая по продолжительности равна приблизительно 2150 годам, – среднее время прохождения точки весеннего равноденствия через одно созвездие. В настоящее время точка весеннего равноденствия находится в созвездии Рыб, ежегодно перемещаясь на 50,26″, и приблизительно к 2150 г. переместится уже в созвездие Водолея.
Виктор Фёдорович Майоров – учитель физики, астрономии и информатики высшей квалификационной категории. Выпускник физического факультета Горьковского госуниверситета 1970 г. по кафедре теоретической физики. Окончил также Горьковский иняз (1983 г.). Педагогический стаж 39 лет. Хобби: шахматы, иностранные языки. Депутат Земского собрания Воротынского р-на, руководитель РМО учителей физики и астрономии, председатель Воротынской районной профсоюзной организации работников образования. С женой, тоже педагогом, вырастили троих сыновей: средний тоже учитель физики, младший учится в НСХА на инженерном факультете. Уже есть два внука и внучка. Ученики как победители районных олимпиад ежегодно приглашаются на областную олимпиаду в Н. Новгород (то по физике, то по астрономии, то по информатике). Например, в 2008 г. в областных олимпиадах участвовали 9-классник (по астрономии) и 11-классник (по информатике), на олимпиаде «Таланты земли Нижегородской» двое были удостоены грамот и дипломов 3-й степени, им также были вручены уже в марте символические студенческие билеты Нижегородского университета на факультеты ВМК и мехмат, а Воротынская школа вошла в десятку «школ области, где растят таланты». В том же году команда Воротынской СОШ из четырёх учеников принимала участие в XI открытой олимпиаде Центральной России – XXXX олимпиаде ННЦ по астрономии и физике космоса и III Русском международном астрономическом турнире школьников.
Доказательства вращения Земли
Ярким доказательством вращения Земли вокруг своей оси явился опыт с маятником французского физика Фуко (длинный, гибкий подвес с тяжёлым грузом на конце), произведенный в 1851 году в Парижском Пантеоне. Этот опыт основан на том, что, как известно из физики, маятник, выведенный из положения равновесия, будет совершать колебания всё время в одном и том же направлении до полной остановки.
Иначе говоря, маятник обладает способностью сохранять плоскость своих колебаний неизменной.
Прибор простой конструкции
Это свойство маятника наглядно доказывается при помощи прибора простой конструкции, который доступно сделать каждому. Для этого нужно взять гибкий прутик, согнуть его в дугу и прикрепить концами к какому-либо кружку диаметром, например, около 50 сантиметров.
К верхней части дуги прикрепить нить с камешком и сообщить этому своеобразному маятнику колебание в некоторой плоскости. Легко поворачивая кружок, мы заметим, что маятник продолжает сохранять неизменным направление плоскости своего колебания.
Наблюдение опыта Фуко
При наблюдении опыта Фуко зрители легко могут убедиться в том, что Земля действительно вращается вокруг оси; с течением времени плоскость Земли, расположенная под маятником, поворачивается на некоторый угол от плоскости качания маятника, которая сохраняет и пространстве постоянное направление.
Угол поворота Земли
Угол поворота Земли относительно направления плоскости колебания маятника различен в зависимости от широты места, где этот опыт производится.
На полюсе угол этого отклонения будет за каждый час составлять 15 градусов, на экваторе нуль, а в широтах нашей страны от 9 до 14 градусов. Чем длиннее маятник, тем более заметным становится отклонение плоскости Земли от плоскости его колебания.
Длина маятника Фуко 60 метров. Маятник, подвешенный под куполом Исаакиевского собора в Ленинграде, имеет в длину 98 метров. Он непрерывно качается и каждым своим новым взмахом подтверждает вращение Земли.
Следствия вращения Земли
Доказано также, что вследствие вращения Земли:
Это также доказывает, что Земля вращается вокруг своей оси в направлении с запада на восток. Тела, падающие с высоты, отклоняются несколько к востоку потому, что линейная скорость на вершине башни, например, всегда больше, чем у поверхности Земли, а падая, эти тела сохраняют скорость, полученную ими в начальной точке падения.
Особенность вращения Земли
Теперь мы твёрдо убеждены, что наша Земля вращается подобно детской игрушке – волчку. Только, конечно, нам известно, что Земля, в сущности, очень большое мировое (небесное) тело и не имеет материальной оси, подобно той, которая есть у волчка.
Следует обратить внимание ещё на одну особенность вращения Земли. Как бы сильно мы волчок ни запускали, он рано или поздно перестанет вращаться и упадёт.
Это происходит оттого, что движение волчка всё время тормозится силой трения, действующей на нижний конец его оси о поверхность, на которой он вращается, и сопротивлением воздуха при движении. Земля, как нам уже известно, не соприкасается ни с каким другим мировым телом.
Она как будто бы свободно вращается в мировом пространстве, свободна от тормозящего действия трения и сопротивления воздуха. Она как бы «висит» в мировом пространстве.
Поэтому Земля вращается всегда почти с одинаковой скоростью и всё в одном и том же направлении, с запада на восток.
Иначе говоря, если смотреть на Северный полюс земного шара откуда-нибудь из мирового пространства, Земля вращается в направлении, противоположном движению часовой стрелки.
В результате вращения Земли вокруг своей оси происходит смена дня и ночи. Это явление пытались объяснить еще ученые средневековья, (подробнее: Ученые о вращении Земли).
Полный оборот вокруг своей воображаемой оси Земля совершает в 24 часа (точнее, в 23 часа 56 минут и 4 секунды). Этот промежуток времени мы и называем сутками (звёздными), которые приняты всеми народами за основную единицу измерения времени.
Как древние греки опередили Коперника
Но когда оказалось, что он ровно ничего не знает ни о теории Коперника, ни о строении солнечной системы, я просто опешил от изумления.
Артур Конан Дойл, «Этюд в багровых тонах»
Больше двух тысячелетий назад, в Древней Греции, астроном Аристарх Самосский пришёл к выводу, что Земля вращается вокруг Солнца. Постойте, постойте! Это же сделал Николай Коперник! И не два тысячелетия, а «всего» 500 лет назад. Это ведь он доказал, что все планеты вращаются вокруг Солнца. Или нет? Да, конечно, Коперник. Он установил это, опираясь на множество расчётов и наблюдений, на которые потратил 40 лет. Но первая гелиоцентрическая модель Солнечной системы была построена не им, а Аристархом, на 1800 лет раньше! Коперник знал о ней и строго подтвердил и обосновал эту модель.
Аристарху удалось невероятное — пользуясь элементарной геометрией, лишь наблюдая за небом, он придумал способ вычислить размеры Луны и Солнца и расстояния до них. И написал об этом книгу «О величинах и расстояниях Солнца и Луны». А разве так можно? Ведь Луна и Солнце очень далеко. Как узнать их размеры без современных приборов, без применения законов физики? Оказывается, можно, причём совсем простым рассуждением, доступным школьнику. Сейчас мы сами это проделаем. Найдём размеры Солнца и Луны, а потом вместе с Аристархом придём к выводу о том, что именно Земля должна вращаться вокруг Солнца, а не наоборот. Но Аристарху тогда никто не поверил. Почему? В этом мы тоже разберёмся. Но прежде чем измерять другие планеты и звёзды, надо измерить Землю.
Измеряем Землю
Кто первый высказал идею о шарообразности Земли, неизвестно. Возможно — Пифагор и его ученики, считавшие шар совершеннейшей из фигур. Полтора века спустя Аристотель приводит несколько доказательств шарообразности Земли. Главное из них: во время лунного затмения на поверхности Луны отчётливо видна тень от Земли, и эта тень круглая!
Эратосфен был крупнейшим учёным-энциклопедистом, занимался не только математикой, но и географией, картографией и астрономией. Он долгое время возглавлял Александрийскую библиотеку в Египте — главный научный центр того времени. Работая над составлением первого атласа Земли (конечно, не всей Земли, а известной к тому времени её части), он задумал провести точное измерение земного шара. Ведь чтобы составить карту, надо знать расстояния!
Идея была такова. К югу от Александрии, в городе Сиена (современный Асуан) один день в году, ровно в полдень, Солнце достигает зенита — высшей точки на небе. Исчезает тень от вертикального шеста, на несколько минут освещается дно колодца. Происходит это в день летнего солнцестояния, 22 июня — день наивысшего положения Солнца на небе. Эратосфен направляет своих помощников 2 в Сиену, и те устанавливают, что ровно в полдень (по солнечным часам) Солнце находится точно в зените. Одновременно (как написано в первоисточнике: «в тот же час») Эратосфен измеряет длину тени от вертикального шеста в Александрии. Получился треугольник, который на схематичном рисунке 2, а мы обозначили КАВ и перерисовали крупнее на рисунке 2, б. В Сиене солнечный луч перпендикулярен поверхности Земли, значит, если его продолжить, пройдёт через центр Земли. Параллельный ему луч в Александрии составляет угол с вертикалью, который мы обозначим буквой α. Такой же угол образуют радиусы Земли ZA и ZS, идущие из центра Земли в Александрию и Сиену. Семиклассники знают, почему — потому что накрест лежащие углы при параллельных прямых равны. А младшие пусть поверят нам на слово.
Теперь нарисуем круг радиусом 1 с центром на конце шеста — в точке K (рис. 2, в). Измерим длину дуги внутри угла α, обозначим её буквой d. На рисунке она выделена красным, а круговой сектор (то есть «долька» круга) — синим. Ему соответствует гигантский круговой сектор между радиусами Земли ZA и ZS, и он подобен синей «дольке», потому что имеет тот же угол α. Значит, дуга AS во столько раз больше дуги d, во сколько раз радиус Земли R = ZA больше радиуса маленького круга, равного 1. Итак, AS : d = R : 1. Длину d мы знаем (измерили). Как найти длину дуги AS? Это длина пути из Александрии в Сиену, около 800 км. Её Эратосфен аккуратно вычисляет, исходя из среднего времени движения верблюжьих караванов между двумя городами, а также используя данные бематистов — людей особой профессии, измерявших расстояния шагами. Поделив 800 км на длину дуги d, находим радиус Земли — примерно 6400 км. А длина окружности Земли равна 2πR = 40 000 км. Удивительно, что получилось столь круглое число! Разгадка проста: сама единица длины в 1 метр и была введена (во Франции в конце XVIII века), как одна сорокамиллионная часть окружности Земли (по определению!).
Эратосфен, конечно, использовал другую единицу измерения — стадий (около 200 м). Стадиев было несколько: египетский, греческий, вавилонский, и каким из них пользовался Эратосфен — неизвестно. Поэтому трудно судить наверняка о точности его измерения. Кроме того, неизбежная ошибка возникала в силу географического положения двух городов. Если города находятся на одном меридиане, то полдень в них наступает одновременно. Поэтому, сделав измерения во время наивысшего положения Солнца в каждом городе, мы получим правильный результат. Но на самом деле Александрия и Сиена — не на одном меридиане. Мы можем легко в этом убедиться, взглянув на карту, но у Эратосфена карты не было (ведь он как раз и составлял первую карту). Поэтому его метод (абсолютно верный!), скорее всего, дал неточный результат. Тем не менее, многие исследователи уверены, что точность измерения Эратосфена была высока и что он ошибался менее чем на 2%. Более точное значение было получено только через 2 тысячи лет, в середине XIX века. Над этим трудилась группа учёных во Франции и экспедиция В. Я. Струве в России. Даже в эпоху великих географических открытий, в XVI веке, люди не смогли достичь результата Эратосфена и пользовались неверным значением длины земной окружности. Ни Колумб, ни Магеллан не знали, каковы истинные размеры Земли и какие расстояния им придётся преодолевать. Они-то считали, что длина экватора гораздо меньше, чем на самом деле. Знали бы — может и не поплыли бы.
В чём причина высокой точности метода Эратосфена? До него измерения были локальными, на расстояниях, обозримых человеческим глазом, то есть не более 100 км. При этом неизбежны ошибки из-за рельефа местности, атмосферных явлений и т.д. Для большей точности нужно проводить измерения на очень больших расстояниях. Восьмисот километров между Александрией и Сиеной оказалось достаточно.
Опыт Эратосфена можно проделать и в наших широтах, где Солнце не бывает в зените. Правда, для этого нужны две точки обязательно на одном меридиане. Если же повторить опыт Эратосфена для Александрии и Сиены, сделав измерения в этих городах одновременно (сейчас это легко, можно послать SMS), мы получим верный ответ. И будет неважно, находятся ли города на одном меридиане (почему?).
Измеряем Луну и Солнце
Оказывается, измерить «подручными средствами» Луну и Солнце даже проще, чем Землю. Для этого не нужно уходить за 800 км, а можно всё сделать, не сходя с места. Мы повторим рассуждения Аристарха, попутно чуть поправив и упростив их.
Наши измерения будут состоять из трёх простых шагов. Сначала понаблюдаем за Луной.
Шаг 1. Во сколько раз Солнце дальше, чем Луна?
Почему иногда видна полная Луна, а иногда месяц? Потому что Луна светит отражённым солнечным светом. Если взять шар и посветить на него с одной стороны, то в любом положении освещённой окажется ровно половина шара. Так же и Солнце всегда освещает ровно половину поверхности Луны. Видимая форма Луны зависит от того, как повёрнута к нам эта освещённая половина. В новолуние, когда Луна вовсе не видна на небе, Солнце освещает её обратную сторону. Затем освещённая половина постепенно поворачивается в сторону Земли. Мы начинаем видеть тонкий серп, затем — месяц («растущая Луна»), далее — полукруг (эта фаза Луны называется «квадратурой»). Затем день ото дня (вернее, ночь от ночи) полукруг дорастает до полной Луны. Потом начинается обратный процесс: освещённая полусфера от нас отворачивается. Луна «стареет», постепенно превращаясь в месяц, повёрнутый к нам левой стороной, подобно букве «C», и, наконец, в ночь новолуния исчезает. Период от одного новолуния до другого длится примерно четыре недели. За это время Луна совершает полный оборот вокруг Земли. От новолуния до половины Луны проходит четверть периода, отсюда и название «квадратура».
Замечательная догадка Аристарха была в том, что, когда Луна в квадратуре, солнечные лучи, освещающие половину Луны, перпендикулярны прямой, соединяющей Луну с Землёй, то есть треугольник ZLS, соединяющий Землю, Луну и Солнце, — прямоугольный (рис. 3). Для простоты мы считаем, что наблюдатель находится в центре Земли. Это несильно повлияет на результат, так как расстояние от Земли до Луны и до Солнца значительно больше размеров Земли.
Рис. 3. Луна в квадратуре (схема)
Измерим угол β между лучами ZL и ZS во время квадратуры. Для этого надо одновременно видеть на небе Солнце и Луну: такое возможно, например, ранним утром. Затем нарисуем на большом листе другой прямоугольный треугольник с тем же углом β. Эти треугольники подобны. Измерив линейкой треугольник на листе, мы узнаем, что его гипотенуза в 400 раз больше катета. Значит, и в гигантском треугольнике ZLS гипотенуза ZS во столько же раз больше катета ZL. Таким образом, ZS = 400 ZL, значит Солнце в 400 раз дальше от Земли, чем Луна.
Аристарх получил отношение 20, а не 400, в первую очередь из-за того, что точно установить момент наступления квадратуры по внешнему виду Луны крайне трудно. И всё же наблюдение Аристарха впечатляет. Если бы, как тогда многие считали, Солнце и Луна были примерно на одном расстоянии от Земли, то в момент, когда Луна освещена наполовину, они находились бы недалеко друг от друга на небе, что совсем не так. Убедитесь в этом сами, посмотрев во время квадратуры днём на небо: положение Луны относительно Солнца позволит вам хоть немного лучше ощутить эти огромные масштабы.
Художник Мария Усеинова
1 Конечно, для этого надо обладать очень острым зрением и делать наблюдения в благоприятных условиях. Но в наше время, с помощью оптики с большим увеличением, это сделать легко. Видео «проседающего» на горизонте корабля есть в Интернете.
2 По легенде, одним из них был Архимед, друживший с Эратосфеном.