На что делится 350
Информация о числах
Свойства и характеристики одного числа
Все делители числа, сумма и произведение цифр, двоичный вид, разложение на простые множители.
Свойства пары чисел
Наименьшее общее кратное, наибольший общий делитель, сумма, разность и произведение чисел.
Сейчас изучают числа:
Число 350
Триста пятьдесят
RGB(0, 1, 94) или #00015E
(возможное основание)
физическое, материальное, деньги, карьера, призвание, успех, влияние, сила, власть, судьба, справедливость, месть, карма
Описание числа 350
Неотрицательное число 350 – составное число. Произведение цифр: 0. У числа 350 12 делителя. 744 — сумма делителей. 350 и 0.002857142857142857 — это обратные числа.
Число 350 — не число Фибоначчи.
Признаки делимости чисел
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).
Что такое «признак делимости»
Признак делимости числа — это такая особенность числа, которая еще до выполнения деления позволяет определить, кратно ли число делителю.
Истинный путь джедая, чтобы зря не пыхтеть над числами, которые в конечном итоге не делятся.
Однозначные, двузначные и трехзначные числа
Однозначное число — это такое число, в составе которого один знак (одна цифра). Девять однозначных натуральных чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9.
Двузначные числа — такие, в составе которых два знака (две цифры). Цифры могут повторяться или быть различными.
Трехзначные числа — числа, в составе которых три знака (три цифры).
Чётные и нечётные числа
Число называют четным тогда, когда оно делится на два без остатка. А нечетные числа — те, что на два без остатка не делятся. Все просто!
Признаки делимости чисел
Признак делимости на 2. Сразу можно сказать, что число делится на 2, если последняя цифра четная.
Признак делимости на 3. Сумма цифр числа должна делиться на 3.
Признаки делимости на 4. Число делится на 4, если две последние цифры — 0 или если они образуют цифру, которая делится на 4.
Признаки делимости на 5. Число делится на 5, если заканчивается на 0 или 5.
Признак делимости на 6. На 6 делятся те числа, которые могут одновременно делится на 2 и на 3.
Признаки делимости на 8. Число делится на 8, если три последних цифры — 0 или если они образуют число, которое делится на 8.
Признак делимости на 9. Число делится на 9, если сумма цифр делится на 9.
Признаки делимости на 10, 100. Числа, которые заканчиваются на 0, 00, 000 делятся на 10, 100, 1000 и так далее.
Решение №2563 Отношение трёхзначного натурального числа к сумме его цифр – целое число.
Отношение трёхзначного натурального числа к сумме его цифр – целое число.
а) Может ли это отношение быть равным 34?
б) Может ли это отношение быть равным 84?
в) Какое наименьшее значение может принимать это отношение, если первая цифра трёхзначного числа равна 4?
Источник: Ященко ЕГЭ 2022 (36 вар)
а) Да, может. Дано трёхзначное число аbc, которое можно записать как а·100 + b·10 + c·1 и сумма его чисел а + b + c (а,b и с – целые). Их отношение должно быть равно 34:
Заметим, удобные коэффициенты 22 и 11. Что бы обе части уравнения были равны, возьмём b = 0, a = 1, c = 2:
22·1 = 8·0 + 11·2
22 = 22
Значит отношение равно 34, если взять число abc = 102, проверим:
б) Нет, не может. Аналогично пункту а) распишем отношение равное 84:
Переменная а может быть равна от 1 до 9, переменные b и с равны от 0 до 9.
В левой части уравнения можем получить следующие значения:
16·1 = 16
16·2 = 32
16·3 = 48
16·4 = 64
16·5 = 80
16·6 = 96
16·7 = 112
16·8 = 128
16·9 = 144
В правой части уравнения можем получить, запишем по возрастанию:
74·0 + 83·0 = 0
74·1 + 83·0 = 74
74·0 + 83·1 = 83
74·2 + 83·0 = 148
74·1 + 83·1 = 157
Дальше перебирать нет смысла, значения будут больше значений левой части (144).
Ни одно значение левой и правой части не совпадает, значит отношение не может быть равно 84.
в) Аналогично пункту а) запишем отношение с первой цифрой (а) равной 4 и упростим:
Заметим, что бы дробь была наименьшей знаменатель 4 + b + c должен быть наибольшим. Т.к. числитель делится на 9 (3·3 = 9), то знаменатель должен делится хотя бы на 3.
Наибольший знаменатель может быть равен:
4 + 9 + 9 = 22
Но он не делится на 3. Запишем знаменатели которые мы можем получить и которые делятся на 3:
21; 18; 15; 12; 9; 6
1. Если знаменатель равен 21:
То возможны следующие случаи:
2. Если знаменатель равен 18:
То возможны следующие случаи:
Выбираем наименьшее целое значение, отношения трёхзначного числа:
Получается оно при цифрах: а = 4, b = 6, c = 8, и соответственно трёхзначном числе 468.
Ответ: а) да; б) нет; в) 26.
- На что влияет поколение процессоров
- На что идут профсоюзные взносы