На что делится 641
Признаки делимости чисел
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).
Что такое «признак делимости»
Признак делимости числа — это такая особенность числа, которая еще до выполнения деления позволяет определить, кратно ли число делителю.
Истинный путь джедая, чтобы зря не пыхтеть над числами, которые в конечном итоге не делятся.
Однозначные, двузначные и трехзначные числа
Однозначное число — это такое число, в составе которого один знак (одна цифра). Девять однозначных натуральных чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9.
Двузначные числа — такие, в составе которых два знака (две цифры). Цифры могут повторяться или быть различными.
Трехзначные числа — числа, в составе которых три знака (три цифры).
Чётные и нечётные числа
Число называют четным тогда, когда оно делится на два без остатка. А нечетные числа — те, что на два без остатка не делятся. Все просто!
Признаки делимости чисел
Признак делимости на 2. Сразу можно сказать, что число делится на 2, если последняя цифра четная.
Признак делимости на 3. Сумма цифр числа должна делиться на 3.
Признаки делимости на 4. Число делится на 4, если две последние цифры — 0 или если они образуют цифру, которая делится на 4.
Признаки делимости на 5. Число делится на 5, если заканчивается на 0 или 5.
Признак делимости на 6. На 6 делятся те числа, которые могут одновременно делится на 2 и на 3.
Признаки делимости на 8. Число делится на 8, если три последних цифры — 0 или если они образуют число, которое делится на 8.
Признак делимости на 9. Число делится на 9, если сумма цифр делится на 9.
Признаки делимости на 10, 100. Числа, которые заканчиваются на 0, 00, 000 делятся на 10, 100, 1000 и так далее.
5 самых старых нерешенных задач Математики о простых числах
Математика была предметом, который веками бросал вызов величайшим умам в истории человечества. Пожалуй, одной из наиболее исследуемых областей Математики является изучение простых чисел.
Наши размышления о закономерностях в простых числах привели к некоторым сложнейшим проблемам, нерешенным даже величайшими математическими гениями. Сегодня мы рассмотрим 5 старейших математических задач о простых числах, которые интуитивно понятны старшекласснику, но все еще не доказаны даже после упорных попыток в течение 500-2000 лет.
1. Совершенные числа: существуют ли нечетные совершенные числа? Бесконечны ли четные совершенные числа?
Рассмотрим числа 6, 28, 496, 8128…
Что в них особенного? Если вы не знаете, то я бы посоветовал сделать небольшую паузу и попытаться найти красивое свойство, которым обладают эти числа.
Если посмотреть на собственные делители этих чисел, то нетрудно заметить то самое «красивое» свойство:
Числа, для которых сумма собственных делителей равна самому числу, называются совершенными числами. Самое раннее исследование совершенных чисел затеряно в истории. Однако, мы знаем, что пифагорейцы 525годдон.э. изучали совершенные числа.
Что мы знаем о таких числах?
Евклид доказал, что для данного n, если — простое число, то — совершенное число. В качестве упражнения попробуйте доказать это самостоятельно.
Окей, краткий экскурс.
Простые числа Мерсенна: простые числа вида для некоторого n. Мерсенн предположил, что все числа вида простые, когда n простое. (Мы знаем, что это неправда. Например, ).
Открытый вопрос: существует ли бесконечно много простых чисел Мерсенна? На данный момент нам известно 47 простых чисел Мерсенна.
В 18 веке Эйлер показал обратное: любое четное совершенное число имеет вид Другими словами, существует взаимно однозначное соответствие между четными совершенными числами и простыми числами Мерсенна.
Как видите, мы знаем о четных совершенных числах и способах их получения еще со времен Евклида около300годдон.э.. Но нам неизвестно, существую ли нечетные совершенные числа. насамомделе,прогрессврешенииэтойпроблемыпрактическиотсутствует.
Подводя итог, можно сказать, что изучение совершенных чисел ставит две давние открытые проблемы, а именно «существование нечетных совершенных чисел» и «существование бесконечно большого числа простых чисел Мерсенна».
Евклид (ок. 300 г. до. н. э.) первым доказал то, что простых чисел бесконечно много.
2. Гипотеза о близнецах: простых чисел-близнецов бесконечно много
Простые числа-близнецы — это пара вида (p, p + 2), где p и p + 2 являются простыми числами.
Точное происхождение гипотезы о простых числах-близнецах не установлено. Первая формулировка гипотезы о простых числах-близнецах была дана в 1846 году французским математиком Альфонсом де Полиньяком. Однако греческий математик Евклид дал старейшее из известных доказательств существования бесконечного числа простых чисел. Но он не предполагал, что существует бесконечное число простых чисел-близнецов.
На протяжении 2000 лет в доказательстве этого утверждения практически не было прогресса.
Что мы знаем!
Существует бесконечно много простых пар вида (p, p + k), где k = 4 на самом деле является суммой не более чем 6 простых чисел (т.е. С
Дата-центр ITSOFT — размещение и аренда серверов и стоек в двух дата-центрах в Москве. За последние годы UPTIME 100%. Размещение GPU-ферм и ASIC-майнеров, аренда GPU-серверов, лицензии связи, SSL-сертификаты, администрирование серверов и поддержка сайтов.
Простые числа: история и факты
Свойства простых чисел впервые начали изучать математики Древней Греции. Математики пифагорейской школы (500 — 300 до н.э.) в первую очередь интересовались мистическими и нумерологическими свойствами простых чисел. Они первыми пришли к идеям о совершенных и дружественных числах.
У совершенного числа сумма его собственных делителей равна ему самому. Например, собственные делители числа 6: 1, 2 и 3. 1 + 2 + 3 = 6. У числа 28 делители — это 1, 2, 4, 7 и 14. При этом, 1 + 2 + 4 + 7 + 14 = 28.
Числа называются дружественными, если сумма собственных делителей одного числа равна другому, и наоборот – например, 220 и 284. Можно сказать, что совершенное число является дружественным для самого себя.
Ко времени появления работы Евклида «Начала» в 300 году до н.э. уже было доказано несколько важных фактов касательно простых чисел. В книге IX «Начал» Эвклид доказал, что простых чисел бесконечное количество. Это, кстати, один из первых примеров использования доказательства от противного. Также он доказывает Основную теорему арифметики – каждое целое число можно представить единственным образом в виде произведения простых чисел.
А затем случился большой перерыв в истории исследования простых чисел, связанный со Средними веками.
Следующие открытия были сделаны уже в начале 17-го века математиком Ферма. Он доказал гипотезу Альбера Жирара, что любое простое число вида 4n+1 можно записать уникальным образом в виде суммы двух квадратов, и также сформулировал теорему о том, что любое число можно представить в виде суммы четырёх квадратов.
Он разработал новый метод факторизации больших чисел, и продемонстрировал его на числе 2027651281 = 44021 × 46061. Также он доказал Малую теорему Ферма: если p – простое число, то для любого целого a будет верно a p = a modulo p.
Малая теорема Ферма послужила основой множества других результатов в теории чисел и методов проверки чисел на принадлежность к простым – многие из которых используются и по сей день.
Ферма много переписывался со своими современниками, в особенности с монахом по имени Марен Мерсенн. В одном из писем он высказал гипотезу о том, что числа вида 2 n +1 всегда будут простыми, если n является степенью двойки. Он проверил это для n = 1, 2, 4, 8 и 16, и был уверен, что в случае, когда n не является степенью двойки, число не обязательно получалось простым. Эти числа называются числами Ферма, и лишь через 100 лет Эйлер показал, что следующее число, 2 32 + 1 = 4294967297 делится на 641, и следовательно, не является простым.
Числа вида 2 n — 1 также служили предметом исследований, поскольку легко показать, что если n – составное, то и само число тоже составное. Эти числа называют числами Мерсенна, поскольку он активно их изучал.
Но не все числа вида 2 n — 1, где n – простое, являются простыми. К примеру, 2 11 — 1 = 2047 = 23 * 89. Впервые это обнаружили в 1536 году.
Многие годы числа такого вида давали математикам наибольшие известные простые числа. Что число M19, было доказано Катальди в 1588 году, и в течение 200 лет было наибольшим известным простым числом, пока Эйлер не доказал, что M31 также простое. Этот рекорд продержался ещё сто лет, а затем Люкас показал, что M127 — простое (а это уже число из 39 цифр), и после него исследования продолжились уже с появлением компьютеров.
В 1952 была доказана простота чисел M521, M607, M1279, M2203 и M2281.
К 2005 году найдено 42 простых чисел Мерсенна. Наибольшее из них, M25964951, состоит из 7816230 цифр.
Работа Эйлера оказала огромное влияние на теорию чисел, в том числе и простых. Он расширил Малую теорему Ферма и ввёл φ-функцию. Факторизовал 5-е число Ферма 2 32 +1, нашёл 60 пар дружественных чисел, и сформулировал (но не смог доказать) квадратичный закон взаимности.
Он первым ввёл методы математического анализа и разработал аналитическую теорию чисел. Он доказал, что не только гармонический ряд ∑ (1/n), но и ряд вида
1/2 + 1/3 + 1/5 + 1/7 + 1/11 +…
получаемый суммой величин, обратных к простым числам, также расходится. Сумма n членов гармонического ряда растёт примерно как log(n), а второй ряд расходится медленнее, как log[ log(n) ]. Это значит, что, например, сумма обратных величин ко всем найденным на сегодняшний день простым числам даст всего 4, хотя ряд всё равно расходится.
На первый взгляд кажется, что простые числа распределены среди целых довольно случайно. К примеру, среди 100 чисел, идущих прямо перед 10000000, встречается 9 простых, а среди 100 чисел, идущих сразу после этого значения – всего 2. Но на больших отрезках простые числа распределены достаточно равномерно. Лежандр и Гаусс занимались вопросами их распределения. Гаусс как-то рассказывал другу, что в любые свободные 15 минут он всегда подсчитывает количество простых в очередной 1000 чисел. К концу жизни он сосчитал все простые числа в промежутке до 3 миллионов. Лежандр и Гаусс одинаково вычислили, что для больших n плотность простых чисел составляет 1/log(n). Лежандр оценил количество простых чисел в промежутке от 1 до n, как
А Гаусс – как логарифмический интеграл
с промежутком интегрирования от 2 до n.
Утверждение о плотности простых чисел 1/log(n) известно как Теорема о распределении простых чисел. Её пытались доказать в течение всего 19 века, а прогресса достигли Чебышёв и Риман. Они связали её с гипотезой Римана – по сию пору не доказанной гипотезой о распределении нулей дзета-функции Римана. Плотность простых чисел была одновременно доказана Адамаром и Валле-Пуссеном в 1896 году.
В теории простых чисел есть ещё множество нерешённых вопросов, некоторым из которых уже многие сотни лет:
Текущие рекорды среди простых чисел
Самое большое простое число, вычисленное проектом GIMPS [Great Internet Mersenne Prime Search], можно посмотреть в таблице на официальной странице проекта.
www.mersenne.org/primes
Самые большие близнецы среди простых чисел – это 2003663613 × 2 195000 ± 1. Они состоят из 58711 цифр, и были найдены в 2007 году.
Самое большое факториальное простое число (вида n! ± 1) – это 147855! — 1. Оно состоит из 142891 цифр и было найдено в 2002.
Наибольшее праймориальное простое число (число вида n# ± 1) – это 1098133# + 1.
Что такое Простые числа
Простые числа — это натуральные числа, больше единицы, которые делятся без остатка только на 1 и на само себя. Например: 2, 3, 5, 7, 11, 13, 17, 19, 23. Единица не является ни простым числом, ни составным.
Последовательность простых чисел начинается с 2 и является бесконечной; наименьшее простое число — это 2 (делится на 1 и на самого себя).
Составные числа — это натуральные числа, у которых есть больше двух делителей (1, оно само и например, 2 и/или 3); это противоположность простым числам. Например: 4, 6, 9, 12 (все делятся на 2, на 3, на 1 и на само себя).
Все натуральные числа считаются либо простыми, либо составными (кроме 1).
Натуральные числа — это те числа, которые возникли натуральным образом при счёте предметов; например: 1, 2, 3, 4. (нет ни дробей, ни 0, ни чисел ниже 0).
Зачастую множество простых чисел в математике обозначается буквой P.
Простые числа до 1000
2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | |
29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 | 61 | 67 |
71 | 73 | 79 | 83 | 89 | 97 | 101 | 103 | 107 | 109 |
113 | 127 | 131 | 137 | 139 | 149 |