На что делится 680
Информация о числах
Свойства и характеристики одного числа
Все делители числа, сумма и произведение цифр, двоичный вид, разложение на простые множители.
Свойства пары чисел
Наименьшее общее кратное, наибольший общий делитель, сумма, разность и произведение чисел.
Сейчас изучают числа:
Число 680
Шестьсот восемьдесят
RGB(0, 2, 168) или #0002A8
(возможное основание)
свобода, движение, разнообразие, приключения, путешествия, риск, опасность, страх
Описание числа 680
Целое вещественное трёхзначное число 680 является составным числом. Произведение всех цифр числа: 0. У числа 16 делителей. 1620 — сумма делителей числа. 680 и 0.0014705882352941176 являются обратными числами.
Данное число представляется произведением простых чисел: 2 * 2 * 2 * 5 * 17.
Число — не число Фибоначчи.
Косинус числа 680: 0.1542, синус числа 680: 0.9880, тангенс числа 680: 6.4079. Натуральный логарифм числа 680 равен 6.5221. Логарифм десятичный числа 680 равен 2.8325. 26.0768 — корень квадратный, 8.7937 — корень кубический. Возведение числа 680 в квадрат: 4.6240e+5.
11 минут 20 секунд — столько в числе 680 секунд. Цифра 5 — это нумерологическое значение этого числа.
585:
1, 3, 5, 9, 13, 15, 39, 45, 65, 117, 195, 585.
360:
1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 180, 360.
680:
1, 2, 4, 5, 8, 10, 17, 20, 34, 40, 68, 85, 136, 170, 340, 680.
612:
1, 2, 3, 4, 6, 9, 12, 17, 18, 34, 36, 51, 68, 102, 153, 204, 306, 612.
60:
1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60.
80:
1, 2, 4, 5, 8, 10, 16, 20, 40, 80.
48:
1, 2, 3, 4, 6, 8, 12, 16, 24, 48.
195:
1, 3, 5, 13, 15, 39, 65, 195.
156:
1, 2, 3, 4, 6, 12, 13, 26, 39, 52, 78, 156.
260:
1, 2, 4, 5, 10, 13, 20, 26, 52, 65, 130, 260.
Делители — они такие:
585: 1, 3, 5, 9, 13, 15, 39, 45, 65, 117, 195
360: 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 180
680: 1, 2, 4, 5, 8, 10, 17, 20, 34, 40, 68, 85, 136, 170, 340
612: 1, 2, 3, 4, 6, 9, 12, 17, 18, 34, 36, 51, 68, 102, 153, 204, 306
60: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30
80: 1, 2, 4, 5, 8, 10, 16, 20, 40
48: 1, 2, 3, 4, 6, 8, 12, 16, 24
195: 1, 3, 5, 13, 15, 39, 65
156: 1, 2, 3, 4, 6, 12, 13, 26, 39, 52, 78
260: 1, 2, 4, 5, 10, 13, 20, 26, 52, 65, 130
Как Вам тут советовали: http://otvet.mail.ru/answer/188667086/ легче всего решить, написав программу, ну я так и сделал) )
N — число, делители которого ищем
For i = 1 To N / 2
If N Mod i = 0 Then «Число N делится на i»
Next
Mod — находит остаток от деления, если он равен нулю, то число делится без остатка
Нахождение всех делителей числа, число делителей числа
В данной статье мы поговорим о том, как найти все делители числа. Начнем с доказательства теоремы, с помощью которой можно задать вид всех делителей определенного числа. Далее возьмем примеры нахождения всех нужных делителей и покажем, как именно определить, сколько делителей имеет конкретное число. В последнем пункте подробно рассмотрим примеры задач на нахождение общих делителей нескольких чисел.
Как найти все делители числа
Сложнее определить все делители составного числа. Сформулируем теорему, которая лежит в основе данного действия.
Учитывая доказательство этой теоремы, мы можем сформировать схему нахождения всех положительных делителей данного числа.
Для этого нужно выполнить следующие действия:
Самым трудным в таком расчете является именно перебор всех комбинаций указанных значений. Разберем подробно решения нескольких задач, чтобы наглядно показать применение данной схемы на практике.
Решение
Для нахождения делителей удобно все полученные значения оформлять в виде таблицы:
Возьмем пример чуть сложнее: в нем при разложении числа получится не один, а два множителя.
Решение
Начнем с разложения данного числа на простые множители.
567 189 63 21 7 1 3 3 3 3 7
t 1 | t 2 | 3 t 1 · 7 t 2 |
0 | 0 | 3 0 · 7 0 = 1 |
0 | 1 | 3 0 · 7 1 = 7 |
1 | 0 | 3 1 · 7 0 = 3 |
1 | 1 | 3 1 · 7 1 = 21 |
2 | 0 | 3 2 · 7 0 = 9 |
2 | 1 | 3 2 · 7 1 = 63 |
3 | 0 | 3 3 · 7 0 = 27 |
3 | 1 | 3 3 · 7 1 = 189 |
4 | 0 | 3 4 · 7 0 = 81 |
4 | 1 | 3 4 · 7 1 = 567 |
Продолжим усложнять наши примеры – возьмем четырехзначное число.
Решение
t 1 | t 2 | t 3 | t 4 | 2 t 1 · 3 t 2 · 5 t 3 · 13 t 4 |
0 | 0 | 0 | 0 | 2 0 · 3 0 · 5 0 · 13 0 = 1 |
0 | 0 | 0 | 1 | 2 0 · 3 0 · 5 0 · 13 1 = 13 |
0 | 0 | 1 | 0 | 2 0 · 3 0 · 5 1 · 13 0 = 5 |
0 | 0 | 1 | 1 | 2 0 · 3 0 · 5 1 · 13 1 = 65 |
0 | 0 | 2 | 0 | 2 0 · 3 0 · 5 2 · 13 0 = 25 |
0 | 0 | 2 | 1 | 2 0 · 3 0 · 5 2 · 13 1 = 325 |
0 | 1 | 0 | 0 | 2 0 · 3 1 · 5 0 · 13 0 = 3 |
0 | 1 | 0 | 1 | 2 0 · 3 1 · 5 0 · 13 1 = 39 |
0 | 1 | 1 | 0 | 2 0 · 3 1 · 5 1 · 13 0 = 15 |
0 | 1 | 1 | 1 | 2 0 · 3 1 · 5 1 · 13 1 = 195 |
0 | 1 | 2 | 0 | 2 0 · 3 1 · 5 2 · 13 0 = 75 |
0 | 1 | 2 | 1 | 2 0 · 3 1 · 5 2 · 13 1 = 975 |
t 1 | t 2 | t 3 | t 4 | 2 t 1 · 3 t 2 · 5 t 3 · 13 t 4 |
1 | 0 | 0 | 0 | 2 1 · 3 0 · 5 0 · 13 0 = 2 |
1 | 0 | 0 | 1 | 2 1 · 3 0 · 5 0 · 13 1 = 26 |
1 | 0 | 1 | 0 | 2 1 · 3 0 · 5 1 · 13 0 = 10 |
1 | 0 | 1 | 1 | 2 1 · 3 0 · 5 1 · 13 1 = 130 |
1 | 0 | 2 | 0 | 2 1 · 3 0 · 5 2 · 13 0 = 50 |
1 | 0 | 2 | 1 | 2 1 · 3 0 · 5 2 · 13 1 = 650 |
1 | 1 | 0 | 0 | 2 1 · 3 1 · 5 0 · 13 0 = 6 |
1 | 1 | 0 | 1 | 2 1 · 3 1 · 5 0 · 13 1 = 78 |
1 | 1 | 1 | 0 | 2 1 · 3 1 · 5 1 · 13 0 = 30 |
1 | 1 | 1 | 1 | 2 1 · 3 1 · 5 1 · 13 1 = 390 |
1 | 1 | 2 | 0 | 2 1 · 3 1 · 5 2 · 13 0 = 150 |
1 | 1 | 2 | 1 | 2 1 · 3 1 · 5 2 · 13 1 = 1950 |
t 1 | t 2 | t 3 | t 4 | 2 t 1 · 3 t 2 · 5 t 3 · 13 t 4 |
2 | 0 | 0 | 0 | 2 2 · 3 0 · 5 0 · 13 0 = 4 |
2 | 0 | 0 | 1 | 2 2 · 3 0 · 5 0 · 13 1 = 52 |
2 | 0 | 1 | 0 | 2 2 · 3 0 · 5 1 · 13 0 = 20 |
2 | 0 | 1 | 1 | 2 2 · 3 0 · 5 1 · 13 1 = 260 |
2 | 0 | 2 | 0 | 2 2 · 3 0 · 5 2 · 13 0 = 100 |
2 | 1 | 0 | 1 | 2 2 · 3 0 · 5 2 · 13 1 = 1300 |
2 | 1 | 0 | 0 | 2 2 · 3 1 · 5 0 · 13 0 = 12 |
2 | 1 | 0 | 1 | 2 2 · 3 1 · 5 0 · 13 1 = 156 |
2 | 1 | 1 | 0 | 2 2 · 3 1 · 5 1 · 13 0 = 60 |
2 | 1 | 1 | 1 | 2 2 · 3 1 · 5 1 · 13 1 = 780 |
2 | 1 | 2 | 0 | 2 2 · 3 1 · 5 2 · 13 0 = 300 |
2 | 1 | 2 | 1 | 2 2 · 3 1 · 5 2 · 13 1 = 3900 |
Как определить количество делителей конкретного числа
Решение
Раскладываем число на множители.
84 42 21 7 1 2 2 3 7
Ответ: всего у 84 будет 24 делителя – 12 положительных и 12 отрицательных.
Как вычислить общие делители нескольких чисел
Зная свойства наибольшего общего делителя, можно утверждать, что количество делителей некоторого набора целых чисел будет совпадать с количеством делителей НОД тех же чисел. Это будет справедливо не только для двух чисел, но и для большего их количества. Следовательно, чтобы вычислить все общие делители нескольких чисел, надо определить их наибольший общий множитель и найти все его делители.
Разберем пару таких задач.
Решение
Для этого нам потребуется алгоритм Евклида:
Решение
Чтобы узнать количество этих чисел, нужно выяснить, сколько положительных делителей имеет НОД.
Ответ: у данных чисел шесть общих делителей.
Нахождение всех делителей числа, число делителей числа
В данной статье мы поговорим о том, как найти все делители числа. Начнем с доказательства теоремы, с помощью которой можно задать вид всех делителей определенного числа. Далее возьмем примеры нахождения всех нужных делителей и покажем, как именно определить, сколько делителей имеет конкретное число. В последнем пункте подробно рассмотрим примеры задач на нахождение общих делителей нескольких чисел.
Как найти все делители числа
Сложнее определить все делители составного числа. Сформулируем теорему, которая лежит в основе данного действия.
Учитывая доказательство этой теоремы, мы можем сформировать схему нахождения всех положительных делителей данного числа.
Для этого нужно выполнить следующие действия:
Самым трудным в таком расчете является именно перебор всех комбинаций указанных значений. Разберем подробно решения нескольких задач, чтобы наглядно показать применение данной схемы на практике.
Решение
Для нахождения делителей удобно все полученные значения оформлять в виде таблицы:
Возьмем пример чуть сложнее: в нем при разложении числа получится не один, а два множителя.
Решение
Начнем с разложения данного числа на простые множители.
567 189 63 21 7 1 3 3 3 3 7
t 1 | t 2 | 3 t 1 · 7 t 2 |
0 | 0 | 3 0 · 7 0 = 1 |
0 | 1 | 3 0 · 7 1 = 7 |
1 | 0 | 3 1 · 7 0 = 3 |
1 | 1 | 3 1 · 7 1 = 21 |
2 | 0 | 3 2 · 7 0 = 9 |
2 | 1 | 3 2 · 7 1 = 63 |
3 | 0 | 3 3 · 7 0 = 27 |
3 | 1 | 3 3 · 7 1 = 189 |
4 | 0 | 3 4 · 7 0 = 81 |
4 | 1 | 3 4 · 7 1 = 567 |
Продолжим усложнять наши примеры – возьмем четырехзначное число.
Решение
t 1 | t 2 | t 3 | t 4 | 2 t 1 · 3 t 2 · 5 t 3 · 13 t 4 |
0 | 0 | 0 | 0 | 2 0 · 3 0 · 5 0 · 13 0 = 1 |
0 | 0 | 0 | 1 | 2 0 · 3 0 · 5 0 · 13 1 = 13 |
0 | 0 | 1 | 0 | 2 0 · 3 0 · 5 1 · 13 0 = 5 |
0 | 0 | 1 | 1 | 2 0 · 3 0 · 5 1 · 13 1 = 65 |
0 | 0 | 2 | 0 | 2 0 · 3 0 · 5 2 · 13 0 = 25 |
0 | 0 | 2 | 1 | 2 0 · 3 0 · 5 2 · 13 1 = 325 |
0 | 1 | 0 | 0 | 2 0 · 3 1 · 5 0 · 13 0 = 3 |
0 | 1 | 0 | 1 | 2 0 · 3 1 · 5 0 · 13 1 = 39 |
0 | 1 | 1 | 0 | 2 0 · 3 1 · 5 1 · 13 0 = 15 |
0 | 1 | 1 | 1 | 2 0 · 3 1 · 5 1 · 13 1 = 195 |
0 | 1 | 2 | 0 | 2 0 · 3 1 · 5 2 · 13 0 = 75 |
0 | 1 | 2 | 1 | 2 0 · 3 1 · 5 2 · 13 1 = 975 |
t 1 | t 2 | t 3 | t 4 | 2 t 1 · 3 t 2 · 5 t 3 · 13 t 4 |
1 | 0 | 0 | 0 | 2 1 · 3 0 · 5 0 · 13 0 = 2 |
1 | 0 | 0 | 1 | 2 1 · 3 0 · 5 0 · 13 1 = 26 |
1 | 0 | 1 | 0 | 2 1 · 3 0 · 5 1 · 13 0 = 10 |
1 | 0 | 1 | 1 | 2 1 · 3 0 · 5 1 · 13 1 = 130 |
1 | 0 | 2 | 0 | 2 1 · 3 0 · 5 2 · 13 0 = 50 |
1 | 0 | 2 | 1 | 2 1 · 3 0 · 5 2 · 13 1 = 650 |
1 | 1 | 0 | 0 | 2 1 · 3 1 · 5 0 · 13 0 = 6 |
1 | 1 | 0 | 1 | 2 1 · 3 1 · 5 0 · 13 1 = 78 |
1 | 1 | 1 | 0 | 2 1 · 3 1 · 5 1 · 13 0 = 30 |
1 | 1 | 1 | 1 | 2 1 · 3 1 · 5 1 · 13 1 = 390 |
1 | 1 | 2 | 0 | 2 1 · 3 1 · 5 2 · 13 0 = 150 |
1 | 1 | 2 | 1 | 2 1 · 3 1 · 5 2 · 13 1 = 1950 |
t 1 | t 2 | t 3 | t 4 | 2 t 1 · 3 t 2 · 5 t 3 · 13 t 4 |
2 | 0 | 0 | 0 | 2 2 · 3 0 · 5 0 · 13 0 = 4 |
2 | 0 | 0 | 1 | 2 2 · 3 0 · 5 0 · 13 1 = 52 |
2 | 0 | 1 | 0 | 2 2 · 3 0 · 5 1 · 13 0 = 20 |
2 | 0 | 1 | 1 | 2 2 · 3 0 · 5 1 · 13 1 = 260 |
2 | 0 | 2 | 0 | 2 2 · 3 0 · 5 2 · 13 0 = 100 |
2 | 1 | 0 | 1 | 2 2 · 3 0 · 5 2 · 13 1 = 1300 |
2 | 1 | 0 | 0 | 2 2 · 3 1 · 5 0 · 13 0 = 12 |
2 | 1 | 0 | 1 | 2 2 · 3 1 · 5 0 · 13 1 = 156 |
2 | 1 | 1 | 0 | 2 2 · 3 1 · 5 1 · 13 0 = 60 |
2 | 1 | 1 | 1 | 2 2 · 3 1 · 5 1 · 13 1 = 780 |
2 | 1 | 2 | 0 | 2 2 · 3 1 · 5 2 · 13 0 = 300 |
2 | 1 | 2 | 1 | 2 2 · 3 1 · 5 2 · 13 1 = 3900 |
Как определить количество делителей конкретного числа
Решение
Раскладываем число на множители.
84 42 21 7 1 2 2 3 7
Ответ: всего у 84 будет 24 делителя – 12 положительных и 12 отрицательных.
Как вычислить общие делители нескольких чисел
Зная свойства наибольшего общего делителя, можно утверждать, что количество делителей некоторого набора целых чисел будет совпадать с количеством делителей НОД тех же чисел. Это будет справедливо не только для двух чисел, но и для большего их количества. Следовательно, чтобы вычислить все общие делители нескольких чисел, надо определить их наибольший общий множитель и найти все его делители.
Разберем пару таких задач.
Решение
Для этого нам потребуется алгоритм Евклида:
Решение
Чтобы узнать количество этих чисел, нужно выяснить, сколько положительных делителей имеет НОД.
Ответ: у данных чисел шесть общих делителей.
Нахождение всех делителей числа, число делителей числа
В данной статье мы поговорим о том, как найти все делители числа. Начнем с доказательства теоремы, с помощью которой можно задать вид всех делителей определенного числа. Далее возьмем примеры нахождения всех нужных делителей и покажем, как именно определить, сколько делителей имеет конкретное число. В последнем пункте подробно рассмотрим примеры задач на нахождение общих делителей нескольких чисел.
Как найти все делители числа
Сложнее определить все делители составного числа. Сформулируем теорему, которая лежит в основе данного действия.
Учитывая доказательство этой теоремы, мы можем сформировать схему нахождения всех положительных делителей данного числа.
Для этого нужно выполнить следующие действия:
Самым трудным в таком расчете является именно перебор всех комбинаций указанных значений. Разберем подробно решения нескольких задач, чтобы наглядно показать применение данной схемы на практике.
Решение
Для нахождения делителей удобно все полученные значения оформлять в виде таблицы:
Возьмем пример чуть сложнее: в нем при разложении числа получится не один, а два множителя.
Решение
Начнем с разложения данного числа на простые множители.
567 189 63 21 7 1 3 3 3 3 7
t 1 | t 2 | 3 t 1 · 7 t 2 |
0 | 0 | 3 0 · 7 0 = 1 |
0 | 1 | 3 0 · 7 1 = 7 |
1 | 0 | 3 1 · 7 0 = 3 |
1 | 1 | 3 1 · 7 1 = 21 |
2 | 0 | 3 2 · 7 0 = 9 |
2 | 1 | 3 2 · 7 1 = 63 |
3 | 0 | 3 3 · 7 0 = 27 |
3 | 1 | 3 3 · 7 1 = 189 |
4 | 0 | 3 4 · 7 0 = 81 |
4 | 1 | 3 4 · 7 1 = 567 |
Продолжим усложнять наши примеры – возьмем четырехзначное число.
Решение
t 1 | t 2 | t 3 | t 4 | 2 t 1 · 3 t 2 · 5 t 3 · 13 t 4 |
0 | 0 | 0 | 0 | 2 0 · 3 0 · 5 0 · 13 0 = 1 |
0 | 0 | 0 | 1 | 2 0 · 3 0 · 5 0 · 13 1 = 13 |
0 | 0 | 1 | 0 | 2 0 · 3 0 · 5 1 · 13 0 = 5 |
0 | 0 | 1 | 1 | 2 0 · 3 0 · 5 1 · 13 1 = 65 |
0 | 0 | 2 | 0 | 2 0 · 3 0 · 5 2 · 13 0 = 25 |
0 | 0 | 2 | 1 | 2 0 · 3 0 · 5 2 · 13 1 = 325 |
0 | 1 | 0 | 0 | 2 0 · 3 1 · 5 0 · 13 0 = 3 |
0 | 1 | 0 | 1 | 2 0 · 3 1 · 5 0 · 13 1 = 39 |
0 | 1 | 1 | 0 | 2 0 · 3 1 · 5 1 · 13 0 = 15 |
0 | 1 | 1 | 1 | 2 0 · 3 1 · 5 1 · 13 1 = 195 |
0 | 1 | 2 | 0 | 2 0 · 3 1 · 5 2 · 13 0 = 75 |
0 | 1 | 2 | 1 | 2 0 · 3 1 · 5 2 · 13 1 = 975 |
t 1 | t 2 | t 3 | t 4 | 2 t 1 · 3 t 2 · 5 t 3 · 13 t 4 |
1 | 0 | 0 | 0 | 2 1 · 3 0 · 5 0 · 13 0 = 2 |
1 | 0 | 0 | 1 | 2 1 · 3 0 · 5 0 · 13 1 = 26 |
1 | 0 | 1 | 0 | 2 1 · 3 0 · 5 1 · 13 0 = 10 |
1 | 0 | 1 | 1 | 2 1 · 3 0 · 5 1 · 13 1 = 130 |
1 | 0 | 2 | 0 | 2 1 · 3 0 · 5 2 · 13 0 = 50 |
1 | 0 | 2 | 1 | 2 1 · 3 0 · 5 2 · 13 1 = 650 |
1 | 1 | 0 | 0 | 2 1 · 3 1 · 5 0 · 13 0 = 6 |
1 | 1 | 0 | 1 | 2 1 · 3 1 · 5 0 · 13 1 = 78 |
1 | 1 | 1 | 0 | 2 1 · 3 1 · 5 1 · 13 0 = 30 |
1 | 1 | 1 | 1 | 2 1 · 3 1 · 5 1 · 13 1 = 390 |
1 | 1 | 2 | 0 | 2 1 · 3 1 · 5 2 · 13 0 = 150 |
1 | 1 | 2 | 1 | 2 1 · 3 1 · 5 2 · 13 1 = 1950 |
t 1 | t 2 | t 3 | t 4 | 2 t 1 · 3 t 2 · 5 t 3 · 13 t 4 |
2 | 0 | 0 | 0 | 2 2 · 3 0 · 5 0 · 13 0 = 4 |
2 | 0 | 0 | 1 | 2 2 · 3 0 · 5 0 · 13 1 = 52 |
2 | 0 | 1 | 0 | 2 2 · 3 0 · 5 1 · 13 0 = 20 |
2 | 0 | 1 | 1 | 2 2 · 3 0 · 5 1 · 13 1 = 260 |
2 | 0 | 2 | 0 | 2 2 · 3 0 · 5 2 · 13 0 = 100 |
2 | 1 | 0 | 1 | 2 2 · 3 0 · 5 2 · 13 1 = 1300 |
2 | 1 | 0 | 0 | 2 2 · 3 1 · 5 0 · 13 0 = 12 |
2 | 1 | 0 | 1 | 2 2 · 3 1 · 5 0 · 13 1 = 156 |
2 | 1 | 1 | 0 | 2 2 · 3 1 · 5 1 · 13 0 = 60 |
2 | 1 | 1 | 1 | 2 2 · 3 1 · 5 1 · 13 1 = 780 |
2 | 1 | 2 | 0 | 2 2 · 3 1 · 5 2 · 13 0 = 300 |
2 | 1 | 2 | 1 | 2 2 · 3 1 · 5 2 · 13 1 = 3900 |
Как определить количество делителей конкретного числа
Решение
Раскладываем число на множители.
84 42 21 7 1 2 2 3 7
Ответ: всего у 84 будет 24 делителя – 12 положительных и 12 отрицательных.
Как вычислить общие делители нескольких чисел
Зная свойства наибольшего общего делителя, можно утверждать, что количество делителей некоторого набора целых чисел будет совпадать с количеством делителей НОД тех же чисел. Это будет справедливо не только для двух чисел, но и для большего их количества. Следовательно, чтобы вычислить все общие делители нескольких чисел, надо определить их наибольший общий множитель и найти все его делители.
Разберем пару таких задач.
Решение
Для этого нам потребуется алгоритм Евклида:
Решение
Чтобы узнать количество этих чисел, нужно выяснить, сколько положительных делителей имеет НОД.
Ответ: у данных чисел шесть общих делителей.
- На что обращают внимание мужчины в первую очередь глядя на женщину
- На что идут взносы в омс