На что способна математика
Математика в жизни: где нужна и как избежать
«Зачем мне эта ваша математика? Где она мне в жизни пригодится?» Разбираемся.
Катя Павловская для Skillbox Media
Этому дерзкому вопросу, по всей видимости, столько же лет, сколько математика вообще преподаётся. Ещё совсем недавно школьные учителя и вузовские преподаватели любили отвечать на него линейкой по лбу цитатой из Ломоносова про то, что якобы она, математика, «ум в порядок приводит».
К слову, эта знаменитая фраза со школьных плакатов, скорее всего, не является подлинной, а приписана Михаилу Васильевичу автором книги «История арифметики» И. Я. Депманом в 1959 году. Менее (или более) верной она от этого, конечно, не становится.
В наше время основной ответ прост: с математикой человек больше зарабатывает. Так, в рейтингах самых высокооплачиваемых профессий стабильно присутствуют финансисты и айтишники, а эти отрасли насквозь пронизаны разнообразной математикой.
Про «самую сексуальную профессию XXI века» яснее любых слов скажет старый мем.
Но что, если вы не алчный айтишник ищете своё призвание в медицине, искусстве, литературе, юриспруденции, дизайне, психологии или развлечениях? Насколько нужна будет вам математика в этом случае? Возможно ли вообще избежать встречи с ней?
Спойлер-1: да, возможно.
Спойлер-2: в какой-то момент, вероятно, станет проще её таки изучить.
Кандидат философских наук, специалист по математическому моделированию. Пишет про Data Science, AI и программирование на Python.
В быту
Где нужна. Математика — в виде элементарной арифметики — в повседневной жизни пригодится для расчёта:
Начала геометрии (площади и объёмы простых фигур) потребуются, когда вы будете подсчитывать количество необходимых материалов для ремонта в доме. Более продвинутая математика (функции и сложные проценты) нужна, если вы оцениваете стоимость кредита, лизинга или решаете, куда вложить свободные средства.
Как избежать. В наши дни все перечисленные и многие другие задачи совершенно не обязательно решать самому. В смартфонах есть калькуляторы, а в интернете, App Store и Google Play — сайты и приложения для расчёта чего угодно: рецептов, финансов, тренировок и путешествий.
Для покупки отделочных и строительных материалов вам нужно просто сказать продавцу размеры комнаты, дома или участка. Если вы инвестируете, то в вашем личном кабинете на сайте банка или брокера уже есть готовые решения на любую стратегию.
Приложения, сервисы и специально обученные люди считают точнее и быстрее, чем вы. Реально, вам даже таблицу умножения можно неделями не вспоминать, если не месяцами. Сколько там будет 7 × 9? …Всё! — математическая программа на неделю выполнена.
Что изучить, если не избегать. Устный счёт — например, систему Трахтенберга или ментальную арифметику. Площади треугольника, прямоугольника, круга, объёмы параллелепипеда, пирамиды, цилиндра, конуса, шара. Теорему Пифагора и формулу Герона. Формулу сложных процентов и начало курса про финансовые рынки на сайте Академии Хана.
Кроме «Википедии» и учебников для начальной и средней школы, можно прочитать классические книги Я. И. Перельмана по занимательной арифметике и математическим головоломкам. Если захочется чего-то посложнее, посмотрите книгу Сергея Самойленко про математику повседневной жизни.
В учёбе
Где нужна: для написания контрольных, получения зачётов и сдачи экзаменов. В России математика преподаётся даже на самых гуманитарных направлениях в школах и вузах, где зачастую скромный объём программы с лихвой компенсируется атмосферой всеобщего трепета перед ней.
Парадокс: заговора математиков по проникновению во все отрасли не существует, но математика тем не менее повсюду.
В литературоведении арифметика нужна для выяснения стихотворного размера, а статистический анализ текста используется для определения авторства. Музыкальное образование начинается со счёта для развития чувства ритма, а художественное — с рисования простейших геометрических фигур.
В социальных науках математика помогает понять связи или корреляции между площадью и населением, выраженными в числах, и ситуацией в регионе или стране. Письменный перевод (лингвистическая дисциплина) уже стал разделом компьютерных наук и, в своей теоретической части, математики.
Формулы классической логики, которая является краеугольным камнем философского и юридического образования, прочно связаны как с математической теорией множеств, так и с булевой алгеброй, лежащей в основе современных компьютеров.
Как избежать. Полностью уклониться от математики в учёбе, скорее всего, не получится, так что встречайте неизбежное с полагающимся самураю достоинством. Тем не менее снизить вероятность совсем уж хардкорного хардкора можно следующими путями:
Международный день математики — 14 марта, он же День числа пи. Неофициальный День математика в университетах нашей страны отмечается 1 апреля (не спрашивайте почему). Математикам не дают Нобелевскую премию — учтите это, если будете сочинять преподавателю поздравление с этими праздниками.
Что и как изучить. Преподаватели, и не только математики, весьма чувствительны даже к малейшим признакам неуважения к своему предмету. Поэтому от вас требуются собранность, дисциплина и прилежание — или как минимум их убедительная видимость.
Будьте осторожны со шпаргалками из интернета — как правило, преподаватели знают их все наизусть. К тому же бездумное заучивание не даёт понимания — а того, кто не понимает, о чём говорит, на экзамене видно сразу. Соответственно, риск дополнительных вопросов → стыд-позор-провал → пересдача.
Лучше всего потратить время на нормальное освоение темы — на основе тех же шпаргалок, — а также на знакомство с дополнительной литературой. Например, можно прочитать бестселлер Стивена Строгаца «Удовольствие от x»: автор обещает нам ни больше ни меньше «второй шанс для знакомства с математикой».
Для карьеры
Где нужна. Даже если ваша работа не связана с математикой напрямую, она может содержаться под капотом в разных инструментах типа формул и макросов в Excel или скриптов для анимации в After Effects.
Второй способ применения математики в карьере — это решение задач на собеседованиях, курсах повышения квалификации, профессиональных конкурсах и сертификационных экзаменах. Сюда относятся, начиная с самых распространённых:
Наконец, третий способ применения математики на работе — символический, когда важно не знание математики, а интерес к ней. Например, если гендир окончил мехмат МГУ, то руководителем департамента скорее станет тот, кто понимает (или старается понять) его шутки про матан и топологию.
Как избежать. Математика в рабочих инструментах спрятана глубоко, и обычному пользователю, как правило, недоступна и не нужна. Поэтому достаточно изучить инструкцию и освоить основные практические приёмы.
Для удовлетворительного решения тестов на IQ тоже можно обойтись без специального изучения математики. Здесь поможет обычный здравый смысл и, главное, опыт решения именно этого типа задач, которые в большинстве восходят к оригинальным тестам Айзенка.
Прочитайте разбор этих задач, сделанный академиком В. Васильевым, а также статью про силлогизмы, особенно часть про круги Эйлера.
Задачи с подвохом, не имеющие точного ответа, решаются с помощью вычисления Ферми. Это метод приближённой оценки чего угодно, основанный на имеющихся у вас знаниях о проблеме. Такие задачи призваны выявить не столько знание математики, сколько кругозор кандидата, его уверенность и способность рассуждать.
Наконец, для того чтобы понимать математиков, можно просто попросить объяснить. Коллеги тоже люди, им нравится чувствовать себя умными и образованными. Зачем-то же, в конце концов, они учились на мехмате?!
Что изучить, если хотите изучить. Решение квадратных уравнений и неравенств. Основные функции: линейная, квадратичная, кубическая, показательная, логарифмическая, тригонометрические. Их производные и интегралы. Начала комбинаторики и теории вероятностей.
Также обратите внимание на курсы в Skillbox, например «Excel + Google Таблицы с нуля до PRO».
Упражняться в решении тестов можно по сборникам вроде «Большой книги IQ-тестов» Ф. Картера и К. Рассела. Общую эрудицию — знание географии, биологии, истории, литературы — подтяните с помощью базы вопросов «Что? Где? Когда?». Ответы и ссылки на источники там есть.
Хорошие темы для small talk с коллегами, идентифицирующими себя как математиков, — это история, философия и методы этой науки. Книг на эту тему великое множество, посоветуем три и одну статью:
В 1960 году физик Юджин Вигнер написал статью «Непостижимая эффективность математики в естественных науках». Одно название ласкает слух любого математика («непостижимая»!), а идеи оттуда можно обсуждать часами — они, к слову, до сих пор звучат очень современно.
Например, гипотеза о связи сознания и квантовых процессов, развитая позднее физиком Роджером Пенроузом в книге «Новый ум короля».
Для хобби и саморазвития
Тем, кто увлекается ставками на исходы спортивных событий, не повредит знакомство с теорией вероятностей и математической статистикой. Базовая статистика нужна и для тайм-менеджмента, основанного на учёте и анализе потраченного времени.
Вообще, теория вероятностей — это один из наиболее практичных способов войти в математику. Главное, чему она учит:
Теорема Байеса, математическая индукция, закон больших чисел и другие методы решения самых разнообразных задач, которые даёт нам математика, лежат в основе рационального мышления, способствуют осознанности и, в конечном итоге, улучшают качество нашей жизни.
Книги, которые можно прочитать, начиная с самых доступных:
Для всего
Мыслить как математик — это значит уметь обобщать и моделировать. Это основы абстрактного мышления, а «использование правильных абстракций приводит к более глубокому проникновению в суть вопроса и большему могуществу при его решении» (С. Строгац, «Удовольствие от x»).
Абстрактное мышление является нашим эволюционным преимуществом — мы умеем с пользой для себя обращаться с тем, что невозможно учуять, увидеть или попробовать на зуб.
Теорикрафтинг (от англ. theorycrafting) — подбор оптимальной экипировки, расчёт урона, «оттачивание» и балансирование персонажа компьютерной игры с использованием специальных калькуляторов, формул и таблиц.
Макс Тегмарк — шведско-американский космолог и астрофизик, профессор MIT. Автор популярной книги «Наша математическая вселенная».
8 причин учить математику (даже если вы гуманитарий)
Часто учителям математики приходится слышать «Да зачем мне ваша математика? Я лингвистом буду!», многим педагогам сложно объяснить, зачем нужен дискриминант гуманитарию. Наш блогер, репетитор по математике и физике Алексей Бердников, задался вопросом «Зачем изучать математику?» и с ходу назвал восемь причин.
Перед тем как чем-то заняться всерьёз, важно обдумать необходимость того, на что вы планируете тратить своё время. Занятия математикой не должны быть исключением. Редко, когда не услышишь от детей в момент отчаяния при очередном подходе к задаче: «А зачем я вообще это делаю? Зачем нам математика?». Вопрос, считаю важный.
1. Математика развивает мышление
Изучая математику и решая задачи, мы учимся обобщать и выделять важное, анализировать и систематизировать, находить закономерности и устанавливать причинно-следственные связи, рассуждать и делать выводы, мыслить логически, стратегически и абстрактно.
Как регулярные спортивные тренировки «прокачивают» тело, делают его здоровым, сильным и выносливым, так регулярные занятия математикой «прокачивают» мозг — развивают интеллект и познавательные способности, расширяют кругозор.
2. Занятия математикой тренируют память
Ученые из Стэнфордского университета в США изучили процесс решения человеком математических задач и выяснили, что взрослые люди используют для этих целей мышление и доведённый до автоматизма навык «доставать» из памяти уже имеющиеся там ответы.
3. Математика закаляет характер
Для правильного решения математических и логических задач нужны внимательность, настойчивость, ответственность, точность и аккуратность. Чем регулярнее тренируются эти «мышцы характера», тем сильнее становятся, тем чаще помогают ребёнку в решении не только учебных задач, но и жизненных проблем.
4. Музыка для математики, математика — для музыки
Комплексное исследование, проведенное Барбарой Хелмрич (Barbara H. Helmrich) из Колледжа Нотр-Дам в Балтиморе, выявило, что дети, которые играли на музыкальных инструментах в средней школе, ощутимо лучше успевают по математике в старших классах.
5. Математика помогает преуспевать в гуманитарных науках
Математика — наука междисциплинарная, она тесно связана с физикой, географией, геологией, химией. Социология и экономика неотделимы от математики, и многие выводы даже привычно гуманитарных наук, таких как лингвистика, журналистика, опираются на математические модели и понятия, математические и логические законы.
6. Математика развивает навыки решения бытовых задач
Чем сложнее становятся математические задачи, тем больше навыков требуется для их решения. Благодаря математике мы избавляемся от вредных привычек:
7. Математика — основа успешной карьеры
Если 10-15 лет назад перспективным считалось изучение иностранных языков, то сейчас свободным владением несколькими языками никого не удивишь. Теперь профессиональная востребованность во многом зависит от понимания технологий, умения мыслить, абстрагироваться и способностей к решению нестандартных задач. Крайне сложно обойтись без знания математики тем, кто хочет работать в сфере IT.
8. Решение задач вырабатывает психологическую стойкость
Решение математических задач помогает улучшить эмоциональный фон. Оно способно избавить от тревоги, помогает контролировать эмоции и предупреждает стресс.
Это, конечно, не все причины, по которым надо заниматься математикой и вообще другими науками. Науки — неотъемлемая часть развития и деятельности любого человека так же, как дружба, семья, спорт, здоровье, работа и так далее.
«Прокачивайте» себя всегда и везде! Желаю успехов!
Вы находитесь в разделе «Блоги». Мнение автора может не совпадать с позицией редакции.
Зачем нужна математика
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Интересные факты про математику
Математика — это не только арифметические задачки. Это особый язык, который учит думать и рассуждать.
Математику называют междисциплинарной наукой, потому что она тесно связана с физикой, географией, геологией, химией. Социология и экономика неотделимы от математики, поэтому многие выводы из гуманитарных исследований опираются на математические понятия и логические законы.
Мир изменился и стал более технологичным, поэтому для любителей математики открыто множество вариантов профессионального развития.
Если 15 лет назад перспективными были сферы маркетинга и юриспруденции, то сегодня лидирует IT.
Профессиональная востребованность = понимание технологий + способность к решению нестандартных задач. И ключ к успеху — знание математики.
Что отличает математику от других школьных предметов:
Математика развивает мышление
Зачем заниматься физкультурой? Ответ простой — для здоровья и красоты тела.
Зачем учить математику? Ответ на этот вопрос кажется менее очевидным.
Математика — это гимнастика для ума. Хочешь не хочешь, но в процессе изучения будут крепчать качества, которые влияют на способ мышления. Для этого не обязательно учиться в профильном классе и участвовать в олимпиадах — решение даже самых простых задачек на пропорции или с процентами дает значительный эффект.
Обобщение, сокращение, анализ, систематизация, выделение важного, поиск закономерностей, формулирование гипотез и доказательство теорий — все это помогает развить мышление, сделать его более гибким. Точно также, как физические упражнения делают наше тело подвижнее, дают заряд сил и тренируют выносливость, математика тренирует ум.
Математика развивает интеллект. Набор правил и функций, которые мы изучаем в школе, делают наше мышление последовательным и логичным. Это отражается на умении рассуждать, формулировать мысли и замечать взаимосвязи. И самое увлекательное, что эти знания можно (и нужно!) применять не только в школе, но и в нестандартных ситуациях: чтобы выбрать самую выгодную банковскую карту, просчитать литры краски для ремонта или создать карту сокровищ, чтобы не забыть где они спрятаны.
Математика — универсальный международный язык, которым владеют почти все люди на земле. Эти знания пригодятся в любой стране и могут стать предметом интересной беседы.
Что понять, зачем учить математику в школе, только представьте, как приятно, когда в голове нет «каши» и путаницы в рассуждениях. На этот счет еще в прошлом веке великий учёный Ломоносов сказал: «Математику только затем учить надо, что она ум в порядок приводит». Как тут можно спорить? 😇
Математика формирует характер
Чтобы правильно решать математические задачи, недостаточно одних лишь знаний. Нужны такие качества характера, как внимательность, настойчивость, последовательность, точность и аккуратность. Чем регулярнее мы практикуемся, тем сильнее укрепляются эти черты. И еще бонус: эти качества можно применять не только на уроках в школе, но и в других сферах жизни.
Чем сложнее математические задачи, тем больше усилий и навыков нужно приложить для их решения.
Благодаря математике можно избавиться от вредных привычек:
Домысливать и не уметь объяснять, почему думаешь именно так
Оперировать фактами и точными терминами и быть более убедительным
Запоминать информацию механически, «зазубривать»
Оценивать, анализировать, строить аналогии и подвергать критике
Математика тренирует память
Ученые из Стэнфордского университета в США изучили, как человек решает математические задачи и выяснили, что взрослые люди используют для этого навык «доставать» из памяти ответы на основе прошлого опыта.
Почему учителя настаивают на регулярном посещении уроков? Дело не в их вредности, а в том, что при решении математических задач, мы «достаем» из памяти ответы на основе прошлого опыта. А чтобы этот опыт закрепить, нужно повторять материал и тренироваться в решении примеров. Только так можно запомнить все правила и формулы. 🤓
В журнале Nature Neuroscience в 2014 году опубликовали исследование про роль определенных областей головного мозга в развитии познавательной активности детей. Оказалось, что на интерес к знаниям оказывает сильное влияние гиппокамп — часть мозга, которая отвечает за память.
Интересный факт! Определенные области головного мозга влияют на развитие познавательной активности детей. Например, на интерес к знаниям влияет часть мозга, которая отвечает за память — гиппокамп. Поэтому:
Математика — волшебница, не иначе! Систематизируем все волшебные свойства и повторим, какие навыки можно развить с помощью математики:
Почему математика хорошо описывает реальность?
Поводом к переводу статьи стало то, что я искал книгу автора «The Outer Limits of Reason». Спиратить книгу я так и не смог, зато наткнулся на статью, которая в довольно сжатом виде показывает взгляд автора на проблему.
Вступление
Одна из самых интересных проблем философии науки — это связь математики и физической реальности. Почему математика так хорошо описывает происходящее во вселенной? Ведь многие области математики были сформированы без какого-либо участия физики, однако, как в итоге оказалось, они стали основой в описании некоторых физических законов. Как это можно объяснить?
Наиболее явно этот парадокс можно наблюдать в ситуациях, когда какие-то физические объекты были сначала открыты математически, а уже потом были найдены доказательства их физического существования. Наиболее известный пример — открытие Нептуна. Урбен Леверье сделал это открытие просто вычисляя орбиту Урана и исследуя расхождения предсказаний с реальной картиной. Другие примеры — предсказание Дираком о существовании позитронов и предположение Максвелла о том, что колебания в электрическом или магнитном поле должно порождать волны.
Ещё более удивительно, что некоторые области математики существовали задолго до того, как физики поняли, что они подходят для объяснения некоторых аспектов вселенной. Конические сечения, изучаемые ещё Аполлонием в древней Греции, были использованы Кеплером в начале 17 века для описания орбит планет. Комплексные числа были предложены за несколько веков до того, как физики стали использовать их для описания квантовой механики. Неевклидова геометрия было создана за десятилетия до теории относительности.
Почему математика так хорошо описывает природные явления? Почему из всех способов выражения мыслей, математика работает лучше всего? Почему, например, нельзя предсказать точную траекторию движения небесных тел на языке поэзии? Почему мы не можем выразить всю сложность периодической таблицы Менделеева музыкальным произведением? Почему медитация не сильно помогает в предсказании результата экспериментов квантовой механики?
Лауреат нобелевской премии Юджин Вигнер, в своей статье «The unreasonable effectiveness of mathematics in the natural sciences», также задается этими вопросами. Вигнер не дал нам каких-то определенных ответов, он писал, что «невероятная эффективность математики в естественных науках — это что-то мистическое и этому нет рационального объяснения».
Альберт Эйнштейн по этому поводу писал:
Как может математика, порождение человеческого разума, независимое от индивидуального опыта, быть таким подходящим способом описывать объекты в реальности? Может ли тогда человеческий разум силой мысли, не прибегая к опыту, постичь свойства вселенной? [Einstein]
Давайте внесем ясность. Проблема действительно встает, когда мы воспринимаем математику и физику как 2 разные, превосходно сформированные и объективные области. Если смотреть на ситуацию с этой стороны, то действительно непонятно почему эти две дисциплины так хорошо работают вместе. Почему открытые законы физики так хорошо описываются (уже открытой) математикой?
Этот вопрос обдумывался многими людьми, и они дали множество решений этой проблемы. Теологи, например, предложили Существо, которое строит законы природы, и при этом использует язык математики. Однако введение такого Существа только все усложняет. Платонисты (и их кузены натуралисты) верят в существование «мира идей», который содержит все математические объекты, формы, а так же Истину. Там же находятся и физические законы. Проблема с Платонистами в том, что они вводят ещё одну концепцию Платонического мира, и теперь мы должны объяснить отношение между тремя мирами (прим. переводчика. Я так и не понял зачем третий мир, но оставил как есть). Так же встает вопрос являются ли неидеальные теоремы идеальными формами (объектами мира идей). Как насчет опровергнутых физических законов?
Наиболее популярная версия решения поставленной проблемы эффективности математики заключается в том, что мы изучаем математику, наблюдая за физическим миром. Мы поняли некоторые свойства сложения и умножения считая овец и камни. Мы изучили геометрию, наблюдая за физическими формами. С этой точки зрения, неудивительно, что физика идет за математикой, ведь математика формируется при тщательном изучении физического мира. Главная проблема с этим решением заключается в том, что математика неплохо используется в областях, далеких от человеческого восприятия. Почему же спрятанный мир субатомных частиц так хорошо описывается математикой, изученной благодаря подсчетам овец и камней? почему специальная теория относительности, которая работает с объектами, двигающимися со скоростями близкими к скорости света, хорошо описывается математикой, которая сформирована наблюдением за объектами, двигающимися с нормальной скоростью?
В двух статьях (раз, два) Макр Зельцер и Я (Носон Яновски) сформулировали новый взгляд на природу математики (прим. переводчика. В целом в тех статьях написано то же, что и здесь, но куда более развернуто). Мы показали, что также, как и в физике, в математике огромную роль играет симметрия. Такой взгляд дает довольно оригинальное решение поставленной проблемы.
Что есть физика
Прежде чем рассматривать причину эффективности математики в физике, мы должны поговорить о том, что такое физические законы. Говорить, что физические законы описывают физические феномены, несколько несерьезно. Для начала можно сказать, что каждый закон описывает много явлений. Например закон гравитации говорит нам что будет, если я уроню свою ложку, также он описывает падение моей ложки завтра, или что будет если я уроню ложку через месяц на Сатурне. Законы описывают целый комплекс разных явлений. Можно зайти и с другой стороны. Одно физическое явление может наблюдаться совершенно по-разному. Кто-то скажет, что объект неподвижен, кто-то, что объект движется с постоянной скоростью. Физический закон должен описывать оба случая одинаково. Также, например, теория тяготения должна описывать мое наблюдение падающей ложки в двигающимся автомобиле, с моей точки зрения, с точки зрения моего друга, стоящего на дороге, с точки зрения парня, стоящего у него на голове, рядом с черной дырой и т.п.
Встает следующий вопрос: как классифицировать физические явления? Какие стоит группировать вместе и приписывать одному закону? Физики используют для этого понятие симметрии. В разговорной речи слово симметрия используют для физических объектов. Мы говорим, что комната симметрична, если левая её часть похожа на правую. Иными словами, если мы поменяем местами стороны, то комната будет выглядеть точно также. Физики немного расширили это определение и применяют его к физическим законам. Физический закон симметричен по отношению к преобразованию, если закон описывает преобразованный феномен таким же образом. Например, физические законы симметричны по пространству. То есть явление, наблюдаемое в Пизе, так же может наблюдаться в Принстоне. Физические законы также симметричны по времени, т.е. эксперимент, проведенный сегодня должен дать такие же результаты, как если бы его провели завтра. Ещё одна очевидная симметрия — ориентация в пространстве.
Существует множество других типов симметрий, которым должны соответствовать физические законы. Относительность по Галиею требует, чтобы физические законы движения оставались неизменными, независимо от того неподвижен объект, или двигается с постоянной скоростью. Специальная теория относительности утверждает, что законы движения должны оставаться прежними, даже если объект движется со скоростью, близкой к скорости света. Общая теория относительности говорит, что законы остаются прежними, даже если объект движется с ускорением.
Физики обобщали понятие симметрии по-разному: локальная симметрия, глобальная симметрия, непрерывная симметрия, дискретная симметрия и т.д. Виктор Стенджер объединил множество видов симметрии по тем, что мы называем инвариантность по отношению к наблюдателю (point of view invariance). Это означает, что законы физики должны оставаться неизменными, независимо от того, кто и как их наблюдает. Он показал как много областей современной физики (но не все) могут быть сведены к законам, удовлетворяющими инвариантности по отношению к наблюдателю. Это означает, что явления, относящиеся к одному феномену, связанны, несмотря на то, что они могут рассматриваться по-разному.
Понимание настоящей важности симметрии прошло с теорией относительности Эйнштейна. До него люди сначала открывали какой-то физический закон, а потом находили в нем свойство симметрии. Эйнштейн же использовал симметрию, чтобы найти закон. Он постулировал, что закон должен быть одинаков для неподвижного наблюдателя и для наблюдателя, двигающегося со скоростью, близкой к световой. С этим предположением, он описал уравнения специальной теории относительности. Это была революция в физике. Эйнштейн понял, что симметрия — определяющая характеристика законы природы. Не закон удовлетворяет симметрии, а симметрия порождает закон.
В 1918 году Эмми Нётер показала, что симметрия ещё более важное понятие в физике, чем думали до этого. Она доказала теорему, связывающую симметрии с законами сохранения. Теорема показала, что каждая симметрия порождает свой закон сохранения, и наоборот. Например инвариантность по смещению в пространстве порождает закон сохранения линейного импульса. Инвариантность по времени порождает закон сохранения энергии. Инвариантность по ориентации порождает закон сохранения углового момента. После этого физики стали искать новые виды симметрий, чтобы найти новые законы физики.
Таким образом мы определили что называть физическим законом. С этой точки зрения неудивительно, что эти законы кажутся нам объективными, вневременными, независимыми от человека. Так как они инвариантны по отношению к месту, времени, и взгляду на них человека, создается впечатление, что они существуют «где-то там». Однако на это можно посмотреть и по-другому. Вместо того, чтобы говорить, что мы смотрим на множество различных следствий из внешних законов, мы можем сказать, что человек выделил какие-то наблюдаемые физические явления, нашел в них что-то похожее и объединил их в закон. Мы замечаем только то, что воспринимаем, называем это законом и пропускаем все остальное. Мы не можем отказаться от человеческого фактора в понимании законов природы.
Прежде чем мы двинемся дальше, нужно упомянуть о одной симметрии, которая настолько очевидная, что о ней редко когда упоминают. Закон физики должен обладать симметрией по приложению (symmetry of applicability). То есть если закон работает с объектом одного типа, то он будет работать и с другим объектом такого же типа. Если закон верен для одной положительно заряженной частицы, двигающейся со скоростью, близкой к скорости света, то он будет работать и для другой положительно заряженной частицы, двигающейся со скоростью такого же порядка. С другой стороны, закон может не работать для макрообъектов с малой скоростью. Все похожие объекты связанны с одним законом. Нам понадобится этот вид симметрии, когда мы будем обсуждать связь математики с физикой.
Что есть математика
Давайте потратим немного времени на то, чтобы понять самую суть математики. Мы рассмотрим 3 примера.
Давным давно какой-то фермер обнаружил, что если ты возьмешь девять яблок и соединишь их с четырьмя яблоками, то в итоге ты получишь тринадцать яблок. Некоторое время спустя он обнаружил, что если девять апельсинов соединить с четырьмя апельсинами, то получится тринадцать апельсинов. Это означает, что если он обменяет каждое яблоко на апельсин, то количество фруктов останется неизменным. В какое-то время математики накопили достаточно опыта в подобных делах и вывели математическое выражение 9 + 4 = 13. Это маленькое выражение обобщает все возможные случаи таких комбинаций. То есть оно истинно для любых дискретных объектов, которые можно обменять на яблоки.
Более сложный пример. Одна из важнейших теорем алгебраической геометрии — теорема Гильберта о нулях (https://ru.wikipedia.org/wiki/Теорема_Гильберта_о_нулях ). Она заключается в том, что для каждого идеала J в полиномиальном кольце существует соответствующее алгебраическое множество V(J), а для каждого алгебраического множества S существует идеал I(S). Связь этих двух операций выражается как , где — радикал идеала. Если мы заменим одно алг. мн-во на другое, мы получим другой идеал. Если мы заменим один идеал на другой, мы получим другое алг. мн-во.
Одним из основных понятий алгебраической топологии является гомоморфизм Гуревича. Для каждого топологического пространства X и положительного k существует группа гомоморфизмов из k-гомотопичой группы в k-гомологичную группу. . Этот гомоморфизм обладает особым свойством. Если пространство X заменить на пространство Y, а заменить на , то гомоморфизм будет другим . Как и в предыдущем примере, какой-то конкретный случай этого утверждения не имеет большого значения для математики. Но если мы собираем все случаи, то мы получаем теорему.
В этих трех примерах мы смотрели на изменение семантики математических выражений. Мы меняли апельсины на яблоки, мы меняли одну идею на другую, мы заменяли одно топологическое пространство на другое. Главное в этом то, что делая правильную замену, математическое утверждение остается верным. Мы утверждаем, что именно это свойство является основным свойством математики. Так что мы будем называть утверждение математическим, если мы можем изменить то, на что оно ссылается, и при этом утверждение останется верным.
Теперь к каждому математическому утверждению нам нужно будет приставить область применения. Когда математик говорит «для каждого целого n», «Возьмем пространство Хаусдорфа», или «пусть C — кокуммутативная, коассоциативная инволютивная коалгебра», он определяет область применения для своего утверждения. Если это утверждение правдиво для одного элемента из области применения, то оно правдиво для каждого (при условии правильного выбора этой самой области применения, прим. пер.).
Эта замена одного элемента на другое, может быть описана как одно из свойств симметрии. Мы называем это симметрия семантики. Мы утверждаем, что эта симметрия фундаментальна, как для математики, так и для физики. Таким же образом, как физики формулируют свои законы, математики формулируют свои математические утверждения, одновременно определяя в какой области применения утверждение сохраняет симметрию семантики (иными словами где это утверждение работает). Зайдем дальше и скажем, что математическое утверждение — утверждение, которое удовлетворяет симметрии семантики.
Если среди вас найдутся логики, то им понятие симметрии семантики будет вполне очевидно, ведь логическое высказывание истинно, если оно истинно для каждой интерпретации логической формулы. Здесь же мы говорим, что мат. утверждение верно, если оно верно для каждого элемента из области применения.
Кто-то может возразить, что такое определение математики слишком широкое и что утверждение, удовлетворяющее симметрии семантики — просто утверждение, не обязательно математическое. Мы ответим, что во-первых, математика в принципе достаточно широка. Математика — это не только разговоры о числах, она о формах, высказываниях, множествах, категориях, микросостояниях, макросостояниях, свойствах и т.п. Чтобы все эти объекты были математическими, определение математики должно быть широким. Во-вторых, существует множество утверждений, не удовлетворяющих симметрии семантики. «В Нью-Йорке в январе холодно», «Цветы бывают только красными и зелеными», «Политики — честные люди». Все эти утверждения не удовлетворяют симметрии семантики и, следоваиельно, не математические. Если есть контрпример из области применения, то утверждение автоматически перестает быть математическим.
Математические утверждения удовлетворяют также и другим симметриям, например симметрии синтаксиса. Это означает, что одни и те же математические объекты могут быть представлены по-разному. Например число 6 может быть представлено как «2 * 3», или «2 + 2 + 2», или «54/9». Также мы можем говорить о «непрерывной самонепересекающийся кривой», о «простой замкнутой кривой», о «жордановой кривой», и мы будем иметь в виду одно и то же. На практике математики пытаются использовать наиболее простой синтаксис (6 вместо 5+2-1).
Некоторые симметрические свойства математики кажутся настолько очевидными, что о них вообще не говорят. Например математическая истина инвариантна по отношению ко времени и пространству. Если утверждение истинно, то оно будет истинно также завтра в другой части земного шара. Причем неважно, кто его произнесет — мать Тереза или Альберт Эйнштейн, и на каком языке.
Так как математика удовлетворяет всем этим типам симметрии, легко понять почему нам кажется, что математика (как и физика) объективна, работает вне времени и независима от наблюдений человека. Когда математические формулы начинают работать для совершенно разных задач, открытых независимо, иногда в разных веках, начинает казаться, что математика существует «где-то там». Однако, симметрия семантики (а это именно то, что происходит) — это фундаментальная часть математики, определяющая её. Вместо того, чтобы сказать, что существует одна математическая истина и мы лишь нашли несколько её случаев, мы скажем, что существует множество случаев математических фактов и человеческий разум объединил их вместе, создав математическое утверждение.
Почему математика хороша в описании физики?
Ну что, теперь мы можем задаться вопросов почему математика так хорошо описывает физику. Давайте взглянем на 3 физических закона.
В каждом из трех приведенных примеров физические законы естественно выражаются только через математические формулы. Все физические явления, которые мы хотим описать, находятся внутри математического выражения (точнее в частных случаях этого выражения). В терминах симметрий мы говорим, что физическая симметрия применимости — частный случай математической симметрии семантики. Более точно, из симметрии применимости следует, что мы можем заменить один объект на другой (того же класса). Значит математическое выражение, которое описывает явление, должно обладать таким же свойством (то есть его область применения должна быть хотя бы не меньше).
Иными словами, мы хотим сказать, что математика так хорошо работает в описании физических явлений, потому-что физика с математикой формировались одинаковым образом. Законы физики не находятся в платоновом мире и не являются центральными идеями в математике. И физики, и математики выбирают свои утверждения таким образом, чтобы они подходили ко многим контекстам. В этом нет ничего странного, что абстрактные законы физики берут свое начало в абстрактном языке математики. Как и в том, что некоторые математические утверждения сформулированы задолго до того, как были открыты соответствующие законы физики, ведь они подчиняются одним симметриям.
Теперь мы полностью решили загадку эффективности математики. Хотя, конечно, есть ещё множество вопросов, на которые нет ответов. Например, мы можем спросить почему у людей вообще есть физика и математика. Почему мы способны замечать симметрии вокруг нас? Частично ответ на этот вопрос в том, что быть живым — значит проявлять свойство гомеостазиса, поэтому живые существа должны защищаться. Чем лучше они понимают своё окружение, тем лучше они выживают. Неживые объекты, например камни и палки, никак не взаимодействуют со своим окружением. Растения же, с другой стороны, поворачиваются к солнцу, а их корни тянутся к воде. Более сложное животное может замечать больше вещей в своем окружении. Люди замечают вокруг себя множество закономерностей. Шимпанзе или, например, дельфины не могут этого. Закономерности наших мыслей мы называем математикой. Некоторые из этих закономерностей являются закономерностями физических явлений вокруг нас, и мы называем эти закономерности физикой.
Можно задаться вопросом почему в физических явлениях вообще есть какие-то закономерности? Почему эксперимент проведенный в Москве даст такие же результаты, если его провести в Санкт-Петербурге? Почему отпущенный мячик будет падать с одинаковой скоростью, несмотря на то, что его отпустили в другое время? Почему химическая реакция будет протекать одинаково, даже если на неё смотрят разные люди? Чтобы ответить на эти вопросы мы можем обратиться к антропному принципу. Если бы во вселенной не было каких-то закономерностей, то нас бы не существовало. Жизнь пользуется тем фактом, что у природы есть какие-то предсказуемые явления. Если бы вселенная была полностью случайна, или похожа на какую-то психоделическую картину, то никакая жизнь, по крайней мере интеллектуальная жизнь, не смогла бы выжить. Антропный принцип, вообще говоря, не решает поставленную проблему. Вопросы типа «Почему существует вселенная», «Почему есть что-то» и «Что тут вообще происходит» пока остаются без ответа.
Несмотря на то, что мы не ответили на все вопросы, мы показали, что наличие структуры в наблюдаемой вселенной вполне естественно описывается на языке математики.