На что способна нейросеть
Антихайп пост: что могут нейронные сети, а что нет
Пост навеян многочисленными топиками про нейронные сети и абсолютное непонимание предмета среди людей. В частности, этим постом https://pikabu.ru/story/iskusstvennyiy_intellekt_ishchet_dru.
Если спросить у молодежи что самое хайпонутое сейчас, ответ будет: биткоин, майнинг, спиннер ( куда же без них) и deep learning. Про последнее я и хотел бы поговорить, чтобы разбить весь хайп в пух и прах. Поговорить о том, что могут нейронные сети, а что нет. Постараюсь без сложных математических терминов, поехали!
Миф №1. Искусственные нейронные сети копируют наш мозг
В корне неверно. В нашей головной помойке ( возьмем то, что у большинства ) по-мимо нейронов есть еще множество клеток, в том числе и различные нейромедиаторные рецепторы, которые реагируют на красивую телочку на улице стояком, а стрессовую ситуацию изменением восприятия.
Выход равен всего лишь этому!
out = activation(Wx + b)
Все! Да да! 5 слоев будет просто 5 таких уравнений.
Выходное значение дальше сравнивается с правильным, а веса подгоняются так чтобы в следующий раз она дала более лучший результат. Это и есть процесс обучения, такой распиаренный. Как видите, скайнетом тут даже не пахнет!
Данная простейшая архитектура нейронных сетей используется для регрессии: предсказании чего-либо, например, курса валют ( 😉 ), или классификации, на распознавании рукописного текста дают точность близкую к 90%, а это самая простая модель! Естественно пойдут всякие разговоры про скайнет и прочую чепуху)
Миф №2. Нейронные сети могут творить.
В каком-то смысле это так. Они могут рисовать изображения, могут сочинять стихи, музыку. Но это все основано на той же самой подгонке матрицы, когда несколько входных данных комбинируются в один, а на выходе получается нечто среднее. Так, например, работают стилизаторы изображений, но это не творение. Они не творят, это по-сути плагиат. Это все равно, что если бы вы взяли кусок одного романа, впихнули в другой роман и назвали новым произведением.
Правда №2. Нейронные сети могут создавать стихи, общаться с человеком, делать качественный перевод
Миф №3. Они появились недавно
Правда №3. Они могут находить новые закономерности и самообучаться.
Да, до этого мы расматривали обучение с учителем, когда был дан идеальный результат.
Миф №4. Нейронные сети приведут к сильному искусственному интеллекту, сопоставимого с человеческим сознанием.
Правда №4. Нейронные сети могут принимать решения.
Нейросети: как искусственный интеллект помогает в бизнесе и жизни
Читайте оригинал статьи в Блоге DTI.
В работе Oxford Martin School 2013 года говорилось о том, что 47% всех рабочих мест может быть автоматизировано в течение следующих 20 лет. Основным драйвером этого процесса является применение искусственного интеллекта, работающего с большими данными, как более эффективной замены человеку.
Машины теперь способны решать все больше процессов, за которые раньше отвечали люди. Кроме того, делают это качественнее и во многих случаях дешевле. О том, что это значит для рынка труда, в июле этого года говорил Герман Греф, выступая перед студентами Балтийского федерального университета им. Канта:
“Мы перестаём брать на работу юристов, которые не знают, что делать с нейронной сетью. Вы — студенты вчерашнего дня. Товарищи юристы, забудьте свою профессию. В прошлом году 450 юристов, которые у нас готовят иски, ушли в прошлое, были сокращены. У нас нейронная сетка готовит исковые заявления лучше, чем юристы, подготовленные Балтийским федеральным университетом. Их мы на работу точно не возьмем.”
Искусственный интеллект, машинное обучение и нейросети: в чем разница
Нейронная сеть – один из способов реализации искусственного интеллекта (ИИ).
В разработке ИИ существует обширная область — машинное обучение. Она изучает методы построения алгоритмов, способных самостоятельно обучаться. Это необходимо, если не существует четкого решения какой-либо задачи. В этом случае проще не искать правильное решение, а создать механизм, который сам придумает метод для его поиска.
#справка Во многих статьях можно встретить термин «глубокое» — или «глубинное» — обучение. Под ним понимают алгоритмы машинного обучения, использующие много вычислительных ресурсов. В большинстве случаев под ним можно понимать просто “нейронные сети”.
Чтобы не запутаться в понятиях «искусственный интеллект», «машинное обучение» и «глубокое обучение», предлагаем посмотреть на визуализацию их развития:
#интересное Существует два типа искусственного интеллекта (ИИ): слабый (узконаправленный) и сильный (общий). Слабый ИИ предназначен для выполнения узкого списка задач. Такими являются голосовые помощники Siri и Google Assistant и все остальные примеры, которые мы приводим в этой статье. Сильный ИИ, в свою очередь, способен выполнить любую человеческую задачу. На данный момент реализация сильного ИИ невозможна, он является утопической идеей.
Как устроена нейросеть
Нейросеть моделирует работу человеческой нервной системы, особенностью которой является способность к самообучению с учетом предыдущего опыта. Таким образом, с каждым разом система совершает все меньше ошибок.
Как и наша нервная система, нейросеть состоит из отдельных вычислительных элементов – нейронов, расположенных на нескольких слоях. Данные, поступающие на вход нейросети, проходят последовательную обработку на каждом слое сети. При этом каждый нейрон имеет определенные параметры, которые могут изменяться в зависимости от полученных результатов – в этом и заключается обучение сети.
Предположим, что задача нейросети – отличать кошек от собак. Для настройки нейронной сети подается большой массив подписанных изображений кошек и собак. Нейросеть анализирует признаки (в том числе линии, формы, их размер и цвет) на этих картинках и строит такую распознавательную модель, которая минимизирует процент ошибок относительно эталонных результатов.
На рисунке ниже представлен процесс работы нейросети, задача которой — распознать цифру почтового индекса, написанную от руки.
История нейросетей
Несмотря на то, что нейросети попали в центр всеобщего внимания совсем недавно, это один из старейших алгоритмов машинного обучения. Первая версия формального нейрона, ячейки нейронной сети, была предложена Уорреном Маккалоком и Уолтером Питтсом в 1943 году.
А уже в 1958 году Фрэнк Розенблатт разработал первую нейронную сеть. Несмотря на свою простоту, она уже могла различать, например, объекты в двухмерном пространстве.
Mark I Perceptron — машина Розенблатта
Первые успехи привлекли повышенное внимание к технологии, однако затем другие алгоритмы машинного обучения стали показывать лучшие результаты, и нейросети отошли на второй план. Следующая волна интереса пришлась на 1990-е годы, после чего о нейросетях почти не было слышно до 2010 года.
Почему нейросети вновь популярны
До 2010 года попросту не существовало базы данных, достаточно большой для того, чтобы качественно обучить нейросети решать определенные задачи, в основном связанные с распознаванием и классификацией изображений. Поэтому нейросети довольно часто ошибались: путали кошку с собакой, или, что еще хуже, снимок здорового органа со снимком органа, пораженного опухолью.
Но в 2010 году появилась база ImageNet, содержащая 15 миллионов изображений в 22 тысячах категорий. ImageNet многократно превышала объем существовавших баз данных изображений и была доступна для любого исследователя. С такими объемами данных нейросети можно было учить принимать практически безошибочные решения.
Размер ImageNet в сравнении с другими существовавшими в 2010 году базами изображений
До этого на пути развития нейросетей стояла другая, не менее существенная, проблема: традиционный метод обучения был неэффективен. Несмотря на то что важную роль играет число слоев в нейронной сети, важен также и метод обучения сети. Использовавшийся ранее метод обратного шифрования мог эффективно обучать только последние слои сети. Процесс обучения оказывался слишком длительным для практического применения, а скрытые слои глубинных нейросетей не функционировали должным образом.
Результатов в решении этой проблемы в 2006 году добились три независимых группы ученых. Во-первых, Джеффри Хинтон реализовал предобучение сети при помощи машины Больцмана, обучая каждый слой отдельно. Во-вторых, Ян ЛеКан предложил использование сверточной нейронной сети для решения проблем распознавания изображений. Наконец, Иошуа Бенджио разработал каскадный автокодировщик, позволивший задействовать все слои в глубокой нейронной сети.
Примеры успешного применения нейросетей в бизнесе
Медицина
Команда исследователей из Ноттингемского университета разработала четыре алгоритма машинного обучения для оценки степени риска сердечно-сосудистых заболеваний пациентов. Для обучения использовались данные 378 тыс. британских пациентов. Обученный искусственный интеллект определял риск кардиологических заболеваний эффективнее реальных врачей. Точность алгоритма — между 74 и 76,4 процентами (стандартная система из восьми факторов, разработанная Американской коллегией кардиологии, обеспечивает точность лишь в 72,8%).
Финансы
Японская страховая компания Fukoku Mutual Life Insurance заключила контракт с IBM. Согласно нему, 34 сотрудников японской компании заменит система IBM Watson Explorer AI. Нейросеть будет просматривать десятки тысяч медицинских сертификатов и учитывать число посещений госпиталей, перенесенные операции и другие факторы для определения условий страхования клиентов. В Fukoku Mutual Life Insurance уверены, что использование IBM Watson повысит продуктивность на 30% и окупится за два года.
Машинное обучение помогает распознавать потенциальные случаи мошенничества в различных сферах жизни. Подобный инструмент использует, например, PayPal – в рамках борьбы с отмыванием денег компания сравнивает миллионы транзакций и обнаруживает среди них подозрительные. В результате, мошеннические транзакции в PayPal составляют рекордно низкие 0,32%, тогда как стандарт в финансовом секторе — 1,32%.
Коммерция
Искусственный интеллект существенно улучшил механизмы рекомендаций в онлайн-магазинах и сервисах. Алгоритмы, основанные на машинном обучении, анализируют ваше поведение на сайте и сравнивают его с миллионами других пользователей. Все для того, чтобы определить, какой продукт вы купите с наибольшей вероятностью.
Механизм рекомендаций обеспечивает Amazon 35% продаж. Алгоритм Brain, используемый YouTube для рекомендации контента, позволил добиться того, что практически 70% видео, просматриваемых на сайте, люди нашли благодаря рекомендациям (а не по ссылкам или подпискам). WSJ сообщало о том, что использование искусственного интеллекта для рекомендаций является одним из факторов, повлиявших на 10-кратный рост аудитории за последние пять лет.
Алгоритм Yandex Data Factory способен предсказывать влияние промоакций на объем продаж товаров. Анализируя историю продаж, а также тип и ассортимент магазина, алгоритм дал 87% точных (с точностью до коробки) и 61% ультраточных (с точностью до упаковки) прогнозов.
Нейросети, анализирующие естественный язык, могут использоваться для создания чат-ботов, позволяющих клиентам получить необходимую информацию о продуктах компании. Это позволит сократить издержки на команды колл-центров. Подобный робот уже работает в приемной Правительства Москвы и обрабатывает около 5% запросов. Бот способен подсказать, в том числе, расположение ближайшего МФЦ и график отключения горячей воды.
На технологии нейронных сетей также основана Albert – маркетинговая платформа полного цикла, самостоятельно осуществляющая практически все операции. Использующая ее компания-производитель нижнего белья Cosabella в итоге расформировала собственный отдел маркетинга и полностью доверилась платформе.
Транспорт
Беспилотные автомобили – концепт, над которым работает большинство крупных концернов, а также технологические компании (Google, Uber, Яндекс и другие) и стартапы, в своей работе опирается на нейросети. Искусственный интеллект отвечает за распознавание окружающих объектов – будь то другой автомобиль, пешеход или иное препятствие.
Так видит наш мир нейросеть
Потенциал искусственного интеллекта в этой сфере не ограничивается автопилотом. Недавний опрос IBM показал: 74% топ-менеджеров автомобильной индустрии ожидают, что умные автомобили появятся на дорогах уже к 2025 году. Такие автомобили, интегрированные в Интернет вещей (см. наш предыдущий лонгрид), будут собирать информацию о предпочтениях пассажиров и автоматически регулировать температуру в салоне, громкость радио, положение сидений и другие параметры. Помимо пилотирования, система также будет информировать о возникающих проблемах (и даже попытается решить их сама) и ситуации на дороге.
Промышленность
Нейросеть, разработанная Марком Уоллером из Шанхайского Университета, специализируется на разработке синтетических молекул. Алгоритм составил шестистадийный синтез производного бензопирана сульфонамида (необходим при лечении Альцгеймера) всего за 5,4 секунды.
Инструменты Yandex Data Factory помогают при выплавке стали: использующийся для производства стали металлический лом зачастую неоднороден по составу. Чтобы сталь соответствовала стандартам, при ее выплавке всегда нужно учитывать специфику лома и вводить специальные добавки. Этим обычно занимаются специально обученные технологи. Но, поскольку на таких производствах собирается много информации о поступающем сырье, применяемых добавках и результате, эту информацию с большей эффективностью способна обработать нейросеть. По данным Яндекса, внедрение нейросетей позволяет на 5% сократить расходы дорогих ферросплавов.
Аналогичным образом нейросеть способна помочь в переработке стекла. Сейчас это нерентабельный, хотя и полезный, бизнес, нуждающийся в государственных субсидиях. Использование технологий машинного обучения позволит значительно сократить издержки.
Сельское хозяйство
Инженеры Microsoft совместно с учеными из ICRISAT применяют искусственный интеллект, чтобы определить оптимальное время посева в Индии. Приложение, использующее Microsoft Cortana Intelligence Suite, также следит за состоянием почвы и подбирает необходимые удобрения. Изначально в программе участвовало всего лишь 175 фермеров из 7 деревень. Они начали посев только после соответствующего SMS уведомления. В результате, они собрали урожая на 30-40% больше, чем обычно.
Развлечения и искусство
В прошлом году вышли и мгновенно стали популярными приложения, использующие нейросети для обработки фото и видео: MSQRD от белорусских разработчиков (в дальнейшем сервис выкупила Facebook), и российские Prisma и Mlvch. Другой сервис, Algorithmia, раскрашивает черно-белые фотографии.
Яндекс успешно экспериментирует с музыкой: нейронные сети компании уже записали два альбома: в стиле Nirvana и “Гражданской обороны”. А музыка, написанная нейросетью под композитора-классика Александра Скрябина, была исполнена камерным оркестром, что заставляет вновь задуматься над вопросом о том, сможет ли робот сочинить симфонию. Нейросеть, созданная сотрудниками Sony, вдохновлялась Бахом.
Японский алгоритм написал книгу “День, когда Компьютер написал роман”. Несмотря на то что с характерами героев и сюжетными линиями неопытному писателю помогали люди, компьютер проделал огромную работу – в итоге одна из его работ прошла отборочный этап престижной литературной премии. Нейросети также написали продолжения к Гарри Поттеру и Игре Престолов.
В 2015 году нейросеть AlphaGo, разработанная командой Google DeepMind, стала первой программой, победившей профессионального игрока в го. А в мае этого года программа обыграла сильнейшего игрока в го в мире, Кэ Цзэ. Это стало прорывом, поскольку долгое время считалось, что компьютеры не обладают интуицией, необходимой для игры в го.
Безопасность
Команда разработчиков из Технологического университета Сиднея представила дронов для патрулирования пляжей. Основной задачей дронов станет поиск акул в прибрежных водах и предупреждение людей на пляжах. Анализ видеоданных производят нейросети, что существенно отразилось на результатах: разработчики утверждают о вероятности обнаружения и идентификации акул до 90%, тогда как оператор, просматривающий видео с беспилотников, успешно распознает акул лишь в 20-30% случаев.
Австралия занимает второе место в мире после США по количеству случаев нападения акул на людей. В 2016 году в этой стране были зафиксированы 26 случаев нападения акул, два из которых закончились смертью людей.
В 2014 году Лаборатория Касперского сообщала, что их антивирус регистрирует 325 тыс. новых зараженных файлов ежедневно. В то же время, исследование компании Deep Instinct показало, что новые версии вирусов практически не отличаются от предыдущих – изменение составляет от 2% до 10%. Самообучающаяся модель, разработанная Deep Instinct, на основании этой информации способна с высокой точностью определять зараженные файлы.
Нейросети также способны искать определенные закономерности в том, как хранится информация в облачных сервисах, и сообщать об обнаруженных аномалиях, способных привести к бреши в безопасности.
Бонус: нейросети на страже нашего газона
В 2016 году 65-летний инженер NVIDIA Роберт Бонд столкнулся с проблемой: соседские кошки регулярно посещали его участок и оставляли следы своего присутствия, что раздражало его жену, работающую в саду. Бонд сразу отсек слишком недружелюбную идею соорудить ловушки для незваных гостей. Вместо этого он решил написать алгоритм, который бы автоматически включал садовые разбрызгиватели воды при приближении кошек.
Перед Робертом стояла задача идентификации кошек в поступающем с внешней камеры видеопотоке. Для этого он использовал систему, основанную на популярной нейросети Caffe. Каждый раз, когда камера наблюдала изменение в обстановке на участке, она делала семь снимков и передавала их нейросети. После этого нейросеть должна была определить, присутствует ли в кадре кошка, и, в случае утвердительного ответа, включить разбрызгиватели.
Изображение с камеры во дворе Бонда
До начала работы нейросеть прошла обучение: Бонд “скормил” ей 300 разных фотографий кошек. Анализируя эти фотографии, нейросеть училась распознавать животных. Но этого оказалось недостаточно: она корректно определяла кошек лишь в 30% случаев и приняла за кошку тень Бонда, в результате чего он сам оказался мокрым.
Нейросеть заработала лучше после дополнительного обучения на большем количестве фотографий. Однако Бонд предупреждает, что нейросеть можно натренировать слишком сильно, в случае чего у нее сложится нереалистичный стереотип – например, если все снимки, использующиеся для обучения, сняты с одного ракурса, то искусственный интеллект может не распознать ту же самую кошку с другого угла. Поэтому чрезвычайно важным является грамотный подбор обучающего ряда данных.
Через некоторое время кошки, обучившиеся не на фотографиях, но на собственной шкуре, перестали посещать участок Бонда.
Заключение
Нейронные сети, технология середины прошлого века, сейчас меняет работу целых отраслей. Реакция общества неоднозначна: одних возможности нейросетей приводят в восторг, а других – заставляют усомниться в их пользе как специалистов.
Однако не везде, куда приходит машинное обучение, оно вытесняет людей. Если нейросеть ставит диагнозы лучше живого врача, это не значит, что в будущем нас будут лечить исключительно роботы. Вероятнее, врач будет работать вместе с нейросетью. Аналогично, суперкомпьютер IBM Deep Blue выиграл в шахматы у Гарри Каспарова еще в 1997 году, однако люди из шахмат никуда не делись, а именитые гроссмейстеры до сих пор попадают на обложки глянцевых журналов.
Кооперация с машинами принесет гораздо больше пользы, чем конфронтация. Поэтому мы собрали список материалов в открытом доступе, которые помогут вам продолжить знакомство с нейросетями:
Удивительные возможности нейросетей 2019 года
Кажется, не проходит и дня без того, чтобы в новостях не проскочило сообщение со словами «искусственный интеллект», «нейросеть», «машинное обучение». Это и не удивительно, алгоритмы постоянно совершенствуются, получают новые знания, включая информацию о каждом из нас. И это вырисовывает весьма интересные перспективы будущего, с персонализированными товарами, пищей и развлечениями. Но обо всем по порядку.
Чем удивляют нейросети?
Некоторые новости о нейросетях, которые появились в последние месяцы еще пару лет назад смело можно было бы отправлять на полку фантастических рассказов. Но нет, это не фантастика, это 2019 год.
Нейросети понимают, чего хотят младенцы
Исследователи из Нью Джерси разработали нейросеть, которая может отличать крики младенцев друг от друга и классифицировать их. Испытания с более чем сотней (на сегодняшний день) деток от 3 до 6 месяцев показали, что нейросеть в абсолютном большинстве случаев верно понимает, чего хочет ребенок: поесть, поспать, сменить подгузник, внимания, чувствует боль или иной дискомфорт.
Нейросети «оживляют» изображения
Сотрудники Samsung AI Center-Moscow и специалисты из Сколково создали систему, способную всего по нескольким (от 1 до 8) изображениям человека (фотографиями или даже портретам) создавать его анимацию. В результате мы можем взглянуть на достаточно реально двигающееся лица Альберта Эйнштейна, Мерлин Монро, Федора Достоевского, да и многих других. Выглядит впечатляюще!
Нейросети создают фотографические изображения
В этом году была представлено несколько нейросетей, способных быстро нарисованные человеком наброски превращать в реально выглядящие изображения (к примеру, домик в виде квадратика и треугольника или пририсованную улыбку на фото человека).
Мало того, появились нейросети самостоятельно создающие неотличимые от реальных лица людей, изображения животных, транспорта, жилых помещений и многого другого.
Нейросети по голосу воссоздают портреты людей
Массачусетский технологический институт продолжает удивлять. Представленная этим учреждением нейросеть Speech2Face создает портреты людей, только услышав образец их голоса. И только взгляните, насколько точно в большинстве случаев алгоритм показывает пол, национальность и возраст людей. Да и сами лица в ряде случаев достаточно выраженно похожи на оригинал.
Нейросети узнают возраст по движению глаз
А в Университете Миннесоты была разработана нейросеть, которая только по траектории движения глаз детей, при демонстрации им различных изображений, могла верно определить возраст в 83% случаев. Правда в исследованиях участвовали только дети до 3 лет.
Нейросети пишут «человеческие» тексты
В начале этого года компания OpenAI заявила о создании нейросети, способной написать текст (будь то новостная заметки или целая повесть), неотличимый от человеческих статей и произведений. Опасаясь неблагочестивого использования программы для создания ложных новостных заметок, компания не представила эту нейросеть широкой публике.
Нейросети создают ложные движения людей на видео
Разработчики из Facebook AI Research научили свою нейросеть распознавать движущегося человека на видео, заменять все, что есть на видео, кроме распознанного объекта, и даже добавлять человеку на видео новые движения. Причем «захваченным» видеоизображением человека нейросеть позволяет управлять с помощью клавиатуры, как в компьютерной игре.
Нейросети отменяют фотошоп
Страшный сон многих стал реальностью – появилась нейросеть, способная видеть, было ли изображение обработано в Adobe Photoshop, и затем воссоздавать оригинальный снимок. Пока что программа определяет только один (правда, самый популярный) инструмент «Пластика с учетом лица», однако создатели нейросети полагают, что в скором времени ни какое редактирование изображений не пройдет незамеченным.
Нейросети будут решать, что предложить Вам поесть
McDonald’s приобрел компанию Dynamic Yield, которая занимается разработкой нейросетей для персонализированной рекламы. Так что, возможно, в скором времени, вам будут предлагать пищу, от приобретения которой с большой долей вероятности вам будет очень сложно отказаться.
Нейросети придумывают новые виды спорта
Вы не являетесь фанатом какого-то определенного вида спорта? Возможно, нейросети в скором будущем смогут придумать новый спорт, который вам понравится. Так компания AKQA с помощью своих нейросетей на основе 7300 правил из 400 других видов спорта смогла создать новый спорт Speedgate. С основными правилами этой игры можете ознакомиться из видеоролика, в котором также можно увидеть, как создатели нейросети играют в Speedgate.
Нейросети пишут музыку
Уже не первый год поступают сообщения о том, что нейросети пишут музыку в том или ином стиле. В начале этого года Яндекс представил нейросеть, которая смогла написать пьесу для симфонического оркестра с альтом. Не нравится классика? Тогда, возможно, вам понравится нейросеть от Dadabots, которая в прямом эфире на ютуб канале нон-стоп сочиняет произведения в стиле death metal.
Нейросети создают алкоголь
Разработчики из Fourkind и Microsoft разработали нейросеть, которая создала новый сорт виски для винокуренного завода Mackmyra в Швеции. При этом учитывались более сотни параметров – от ингредиентов и способов производства до особенностей настаивания полученного напитка.
А что же насчет персонализации?
Значительная часть жизни человека проходит в интернете, в разнообразных социальных сетях. Не удивительно, что алгоритмы от Facebook, Instagram, YouTube, Google, Amazon, Twitter и др., знают многих людей чуть ли не лучше, чем они сами. И это направление будет только развиваться. Плохо ли это? Сложно сказать однозначно.
Но вполне вероятно, что нас может ожидать будущее, где под каждого из нас будет писаться собственная музыка, создаваться картины, сочиняться рассказы, даже предлагаться определенная еда и уникальные напитки. Одна и та же новость для разных людей будет доноситься разным способом. Один человек увидит сухие статистические показатели в двух строках, другой – красочное описание того или иного процесса в виде лонгрида, всё в зависимости от предпочтений каждого.
Кстати, даже фильмы и сериалы также могут стать персонализированными, с помощью добавления магии технологий. К примеру, Netflix уже экспериментирует с сюжетами, которые зависят от решений и действий зрителя. А если вы вдруг захотите увидеть других актеров, исполняющих роли в фильме? Нейросети и здесь уже начинают приходить на помощь. Технологии DeepFake с каждым годом становятся все лучше и в скором времени лица, тела, одежду любых личностей на видео можно будет заменить за несколько минут.
К примеру, можете взглянуть на сцену из «Терминатор 2: судный день» в которой Арнольда Шварценеггера заменили Сильвестром Сталлоне.
Резюме
И это далеко не все события, связанные с нейросетями, только за этот год. Учитывая вышеописанные новости, не удивительно что правительства многих стран все больше обращают внимания на вопросы, связанные с искусственным интеллектом. Так, 8 июня этого года представители стран «Большой двадцатки» впервые подписали документ, в котором содержатся принципы работы с искусственным интеллектом.
Можно уверенно утверждать, что эта сфера будет развиваться еще стремительней, так как никто не хочет остаться позади набирающего обороты поезда прогресса. К примеру, в России на совещании с президентом по вопросам развития технологий в области искусственного интеллекта было сказано:
…разработать решения, которые могут обеспечить превосходство [искусственного интеллекта] над человеком по специальным задачам. И к 2030 году мы должны обеспечить превосходство человека по широкому кругу задач.