Найти сумму ряда доказав что он сходится
Вычислить сумму ряда онлайн
Для того, чтобы вычислить сумму ряда, нужно просто сложить элементы ряда заданное количество раз. Например:
В приведённом выше примере это удалось сделать очень просто, поскольку суммировать пришлось конечное число раз. Но что делать, если верхний предел суммирования бесконечность? Например, если нам нужно найти сумму вот такого ряда:
По аналогии с предыдущим примером, мы можем расписать эту сумму вот так:
Но что делать дальше?! На этом этапе необходимо ввести понятие частичной суммы ряда. Итак, частичной суммой ряда (обозначается Sn ) называется сумма первых n слагаемых ряда. Т.е. в нашем случае:
Тогда сумму исходного ряда можно вычислить как предел частичной суммы:
Таким образом, для вычисления суммы ряда, необходимо каким-либо способом найти выражение для частичной суммы ряда ( Sn ). В нашем конкретном случае ряд представляет собой убывающую геометрическую прогрессию со знаменателем 1/3. Как известно сумма первых n элементов геометрической прогрессии вычисляется по формуле:
Тогда сумма нашего ряда ( S ) согласно определению, данному выше, равна:
Рассмотренные выше примеры являются достаточно простыми. Обычно вычислить сумму ряда гораздо сложнее и наибольшая трудность заключается именно в нахождении частичной суммы ряда. Представленный ниже онлайн калькулятор, созданный на основе системы Wolfram Alpha, позволяет вычислять сумму довольно сложных рядов. Более того, если калькулятор не смог найти сумму ряда, вероятно, что данный ряд является расходящимся (в этом случае калькулятор выводит сообщение типа «sum diverges»), т.е. данный калькулятор также косвенно помогает получить представление о сходимости рядов.
Ссылка на введенное выражение Скопировано
Другие полезные разделы:
Оставить свой комментарий:
Мы в социальных сетях:
Группа ВКонтакте | Бот в Телеграмме
Сумма ряда
Содержание:
Понятие суммы ряда
Постановка задачи. Найти сумму ряда
где — целые числа.
План решения. Суммой ряда называется предел последовательности его частичных сумм , т.е.
где
1. По условию задачи
Если корни знаменателя различаются на целое число, т.е. где — натуральное число, то члены последовательности частичных сумм ряда легко найти, так как в выражении многие слагаемые взаимно уничтожаются.
По этой ссылке вы найдёте полный курс лекций по высшей математике:
2. Разлагаем общий член ряда на элементарные дроби:
и выписываем несколько членов ряда так, чтобы было видно, какие слагаемые сокращаются при вычислении частичных сумм ряда.
3. Находим -ю частичную сумму ряда:
,
сократив соответствующие слагаемые.
4. Вычисляем сумму ряда по формуле (1)
и записываем ответ.
Пример:
Решение:
1. Корни знаменателя и различаются на целое число, т.е. Следовательно, члены последовательности частичных сумм ряда легко найти, так как в выражении многие слагаемые взаимно уничтожаются.
2. Разлагаем общий член ряда на элементарные дроби
и выписываем несколько членов ряда:
3. Сокращая все слагаемые, какие возможно, находим -ю частичную сумму ряда:
4. Вычисляем сумму ряда по формуле (1):
Ответ:
Возможно вам будут полезны данные страницы:
Вычисление суммы ряда почленным интегрированием
Постановка задачи. Найти сумму функционального ряда вида
и указать область сходимости ряда к этой сумме.
План решения.
1. Находим область сходимости ряда.
По признаку Коши интервал сходимости определяется неравенством
Если , ряд расходится. Если , ряд сходится условно (по признаку Лейбница). Следовательно, область сходимости определяется неравенствами
2. Делаем в исходном ряде замену , получим степенной ряд
с областью сходимости .
3. Известна формула для вычисления суммы членов бесконечно убывающей геометрической прогрессии
4. Кроме того, имеем очевидное равенство
5. Учитывая, что степенной ряд можно почленно интегрировать на любом отрезке , целиком принадлежащем интервалу сходимости, и используя формулу (2), получаем
Заметим, что так как ряд (1) сходится в граничной точке , то сумма ряда непрерывна в этой точке (справа). Следовательно,
6. Вычисляем интеграл, делаем замену на и записываем ответ: сумму ряда и область его сходимости.
Замечание. Если ряд имеет вид
то применяем теорему о почленном интегрировании степенного ряда дважды или разлагаем дробь на элементарные:
и вычисляем сумму каждого ряда почленным интегрированием.
Пример:
и указать область сходимости ряда к этой сумме.
Решение:
1. Находим область сходимости ряда.
По признаку Коши интервал сходимости определяется неравенством
В граничных точках при ряд расходится, при ряд сходится условно.
Следовательно, данный ряд сходится при всех .
2. Сделаем замену Получим геометрический ряд (1) с областью сходимости
3. Используем формулу для вычисления суммы членов бесконечно убывающей геометрической прогрессии
4. Кроме того, имеем очевидное равенство
5. Учитывая, что степенной ряд можно почленно интегрировать на любом отрезке , целиком принадлежащем интервалу сходимости, и используя формулу (4), получаем
Заметим, что так как ряд (1) сходится в граничной точке , то его сумма непрерывна в этой точке (справа). Следовательно, формула (5) справедлива при всех .
6. Заменяя на , получаем при
Ответ.
Вычисление суммы ряда почленным дифференцированием
Постановка задачи. Найти сумму функционального ряда вида
и указать область сходимости ряда к этой сумме.
1. Находим область сходимости ряда.
По признаку Коши интервал сходимости определяется неравенством
Если , ряд расходится (не выполнено необходимое условие сходимости). Следовательно, область сходимости определяется неравенствами .
2. Делаем в исходном ряде замену и записываем его в виде суммы двух рядов
Следовательно, достаточно найти суммы рядов
и
3. Известна формула для суммы членов бесконечно убывающей геометрической прогрессии
4. Кроме того, имеем очевидное равенство
5. Учитывая, что степенной ряд можно почленно дифференцировать в любой точке интервала сходимости, и используя формулу (1), получаем
6. Вычисляем производную и делаем замену на . Записываем ответ: сумму ряда и область его сходимости.
Замечание. Если ряд имеет вид
то вычисляем сумму трех рядов, причем при вычислении суммы ряда
применяем теорему о почленном дифференцировании степенного ряда дважды.
Пример:
и указать область сходимости ряда к этой сумме.
Решение:
1. Находим область сходимости ряда.
По признаку Коши интервал сходимости определяется неравенством . Отсюда . В граничных точках ряд расходится, так как не выполнено необходимое условие сходимости. Следовательно, ряд сходится в интервале .
2. Делаем в исходном ряде замену и записываем его в виде суммы двух рядов
Следовательно, достаточно найти суммы рядов
3. Используем формулу для вычисления суммы членов бесконечно убывающей геометрической прогрессии:
Следовательно, при всех .
4. Кроме того, имеем очевидное равенство
5. Учитывая, что степенной ряд можно почленно дифференцировать в любой точке интервала сходимости, и используя формулу (2), получаем
Заменяя на , получим
Ответ.
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Сходимость ряда
Содержание:
Сходимость ряда. Основные понятия
Числовым рядом называется выражение вида: где числа называемые членами ряда, образуют бесконечную последовательность. Ряд называется сходящимся, если последовательность его частичных сумм
при имеет конечный предел:
Этот предел называется суммой сходящегося ряда. Если конечный предел не существует, то ряд называется расходящимся.
Примеры с решением
Пример 5.1.
Написать пять первых членов последовательности, если ее член имеет вид:
Решение:
Вместо подставляем
По этой ссылке вы найдёте полный курс лекций по высшей математике:
Пример 5.2.
Пользуясь непосредственно определением, показать что ряд сходится, и найти его сумму.
Решение:
По определению частичной суммы ряда имеем:
Возможно вам будут полезны данные страницы:
Для знакоположительных числовых рядов имеют место следующие достаточные признаки, по которым можно установить их сходимость или расходимость.
1. Признак сравнения. Если члены знакоположительного ряда (1) начиная с некоторого номера, не превосходят соответствующих членов ряда (2) то из сходимости ряда (2) следует сходимость ряда (1), а из расходимости ряда (1) следует расходимость ряда (2). При исследовании рядов на сходимость и расходимость по этому признаку часто используется геометрическая прогрессия которая сходится при и расходится при и гармонический ряд являющийся расходящимся рядом.
2. Признак Даламбера. Если для ряда то при ряд сходится, при — расходится (при вопрос о сходимости ряда остается нерешенным).
Пример 5.3.
Пользуясь необходимым признаком сходимости, показать, что ряд
расходится.
Решение:
Найдем Таким образом, предел общего члена ряда при п —> со отличен от нуля, т.е. необходимый признак сходимости не выполняется. Это означает, что данный ряд расходится.
Пример 5.4.
Исследовать на сходимость ряд
Решение:
Сравним данный ряд с рядом (*) Ряд (*) сходится, так как его члены образуют бесконечно убывающую геометрическую прогрессию со знаменателем При этом каждый член аи данного ряда меньше соответствующего члена ряда (*). Поэтому, согласно признаку сравнения, данный ряд сходится.
Пример 5.5.
Исследовать на сходимость ряд
Решение:
Сравним данный ряд с гармоническим рядом 1 Каждый член данного ряда, начиная со второго, больше соответствующего члена гармонического ряда. Так как гармонический ряд расходится, то, согласно признаку сравнения, расходится и данный ряд.
Пример 5.6.
Исследовать на сходимость ряд
Решение:
Каждый член ряда (*) меньше соответствующего члена ряда Как было показано в Задаче 5.2. последний ряд сходится. Следовательно, сходится и ряд (*). Сходимость исходного ряда, отличающегося от ряда (*) наличием первого члена 1, теперь очевидна.
Пример 5.7.
С помощью признака Даламбера решить вопрос о сходимости ряда
Решение:
Для того чтобы воспользоваться признаком Даламбера, надо знать член ряда. Он получается путем подстановки в выражение общего члена ряда вместо п числа Теперь найдем предел отношения члена к члену при
Так как то данный ряд сходится.
Пример 5.8.
Пользуясь признаком Даламбера, исследовать на сходимость ряд
Решение:
Зная найдем член ряда:
Вычислим Так как то ряд расходится.
Пример 5.9.
На основании признака Даламбера исследовать сходимость ряда
Решение:
Зная член ряда запишем член:
Отсюда
Так как то ряд сходится. Признак сходимости Лейбница. Знакочередующимся рядом называется ряд вида (1) где — положительные числа. Для знакочередующихся рядов имеет место следующий признак сходимости. Признак Лейбница. Ряд (1) сходится, если его члены монотонно убывают по абсолютной величине и общий член стремится к нулю при
Применение сходящихся рядов к приближенным вычислениям основано на замене суммы ряда суммой нескольких первых его членов.
Пример 5.10.
Пользуясь признаком Лейбница, исследовать на сходимость знакочередующийся ряд
Решение:
Так как члены данного ряда по абсолютной величине монотонно убывают: и общий член при стремится к нулю: то в силу признака Лейбница ряд сходится. Абсолютная и условная сходимость знакопеременного ряда
Рядах (1) называется знакопеременным, если среди его членов имеются как положительные, так и отрицательные числа. Признак сходимости знакопеременного ряда. Если ряд (2) составленный из абсолютных величин членов рядов (1), сходится, то ряд (1) также сходится. Знакопеременный ряд (1) называется абсолютно сходящимся, если сходится ряд (2), составленный из абсолютных величин членов данного ряда (1).
Сходящийся знакопеременный ряд называется условно сходящимся, если ряд, составленный из абсолютных величин его членов, расходится.
Пример 5.12.
Исследовать на сходимость ряд
Решение:
Рассмотрим ряд, составленный из абсолютных величин членов данного ряда: По признаку Даламбера этот ряд сходится, так как Следовательно, первоначальный ряд является абсолютно сходящимся.
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.