Как доказать что биссектрисы углов при основании равнобедренного треугольника равны
Биссектрисы равнобедренного треугольника
Свойства биссектрис равнобедренного треугольника
I. Биссектрисы углов при основании равнобедренного треугольника (проведенные к боковым сторонам), равны.
AN и BM — биссектрисы.
Рассмотрим треугольники ACN и BCM
(не забываем, как важно правильно назвать равные треугольники!).
1) AC=BC (по условию (как боковые стороны равнобедренного треугольника))
3) ∠ CAN= ∠ CBM (как углы, на которые биссектрисы делят равные углы при основании равнобедренного треугольника)
Следовательно, ∆ACN=∆BCM (по стороне и двум прилежащим к ней углам).
Из равенства треугольников следует равенство соответствующих сторон: AN=BM.
Что и требовалось доказать.
Если в треугольнике два угла раны, то этот треугольник — равнобедренный (по признаку).
Если в треугольнике две стороны равны, то этот треугольник — равнобедренный (по определению).
Отсюда вытекает, что
Биссектрисы, проведенные из равных углов треугольника, равны.
Биссектрисы, проведенные к равным сторонам треугольника, равны.
(Вместо пары треугольников ACN и BCM можно было рассмотреть треугольники ABM и BAN.
1) AB — общая сторона
2) ∠ MAB= ∠ NBA (как углы при основании равнобедренного треугольника)
3) ∠ ABM= ∠ BAN (как углы, образованные биссектрисами равных углов).
Следовательно, треугольники ACN и BCM равны по стороне и двум прилежащим к ней углам).
II. Биссектриса угла при основании равнобедренного треугольника делит боковую сторону на отрезки, пропорциональные боковой стороне и основанию.
Свойства биссектрисы равнобедренного треугольника
В данной публикации мы рассмотрим основные свойства биссектрисы равнобедренного треугольника (внутренней и внешней), а также разберем пример решения задачи по данной теме.
Примечание: напомним, что равнобедренным называется треугольник, в котором две стороны равны (боковые), а третья является основание фигуры.
Свойства биссектрисы равнобедренного треугольника
Свойство 1
В равнобедренном треугольнике биссектрисы, проведенные к боковым сторонам, равны между собой.
Обратная формулировка: если две из трех биссектрис в треугольнике равны, значит он является равнобедренным.
Свойство 2
В равнобедренном треугольнике биссектриса, проведенная к основанию, одновременно является и медианой и высотой.
Свойство 3
Если известны стороны равнобедренного треугольника, то длину биссектрисы, проведенную к основанию, можно посчитать по формуле:
Примечание: данная формула следует из теоремы Пифагора ( l и a – катеты прямоугольного треугольника, b – его гипотенуза).
Свойство 4
Внешняя биссектриса угла равнобедренного треугольника, расположенного напротив его основания, параллельна этому основанию.
Примечание: к равнобедренному треугольнику применимы и другие свойства биссектрисы, приведенные в нашей публикации – “Определение и свойства биссектрисы угла треугольника”.
Пример задачи
Биссектриса равнобедренного треугольника с боковой стороной 25 см равняется 20 см. Найдите периметр фигуры.
Извлекаем квадратный корень из найденного значения и получаем 15 см.
Следовательно, основание треугольника равно 30 см (15 см ⋅ 2).
Периметр фигуры равен сумме всех ее сторон, т.е.: 25 см + 25 см + 30 см = 80 см.