Как определить что треугольники подобны
Подобие треугольников (ЕГЭ — 2022)
Что такое равные треугольники, понятно более или менее всем: их можно правильно наложить – и они совпадут.
А вот что такое подобные треугольники? Вроде как «похожие», но как это понимать? И для чего это понимать?
Ну например для решения задание ЕГЭ №16, где подобие треугольников используется для доказательств. Кстати, полностью 16-ю задачу решают менее 1% выпускников!
Читай эту статью, смотри вебинар по 16 задаче и все поймешь!
Подобие треугольников — коротко о главном
Подобные треугольники – это треугольники, у которых все углы равны и все стороны строго пропорциональны.
Коэффициент пропорциональности называется коэффициентом подобия \( \displaystyle k\).
\( \angle A = \angle
Отношение периметров подобных треугольников равно коэффициенту подобия: \( \displaystyle \frac<<
_ _<<_<1>><_<1>>< Отношение площадей подобных треугольников равно квадрату коэффициента подобия: \( \displaystyle \frac<< Признаки подобия треугольников: По двум углам: По одному углу и отношению заключающих его сторон: По отношению трех сторон: Мы разобрали подробно все, что касается треугольников в общем. Кроме того мы рассмотрели отдельные темы: Но что такое подобные треугольники? Вот, например, такой и такой: Похожи эти треугольники? Ты скажешь, конечно же нет! А вот такой и такой? Посмотри внимательно, тоже похожи. А теперь строго математически! Треугольники называются подобными, если у них все углы равны и все стороны пропорциональны. То есть все углы равны и все стороны одного треугольника в \( \displaystyle 5\), или, в \( \displaystyle 7\), или в \( \displaystyle 8,21\) (или и т.д.) больше сторон другого треугольника. Записываются слова «треугольник \( \displaystyle ABC\) подобен треугольнику \( \displaystyle <_<1>><_<1>>< То число раз, в которое отличаются стороны подобных треугольников, называются коэффициентом подобия, обозначается обычно с помощью буквы \( \displaystyle k\). \(\angle A = \angle Можно было бы все так и оставить, но, как и в случае с равенством треугольников, ленивым математикам стало слишком неохота проверять равенство ВСЕХ трех углов, и пропорциональность ВСЕХ трех сторон. Помнишь еще, что «\( \displaystyle \sim<\ >\)» обозначает слова «подобен»? Осознай удобство! Вместо того, чтобы проверять 6 утверждений – 3 равных угла и 3 пропорциональных стороны – ДОСТАТОЧНО РАВЕНСТВА ВСЕГО ДВУХ УГЛОВ! И это вообще-то самых удобный и часто используемый признак. Но есть и еще два. Смотри. Признаки нам рассказали о том, как обнаружить подобные треугольники, а теперь, как же воспользоваться найденным? Ну вот, что же хорошего? А то, что тогда… Все элементы одного треугольника ровно в \( \displaystyle 2\) (или сколько у тебя выйдет раз) больше, чем элементы другого треугольника. Не только стороны, но и высоты, биссектрисы, медианы, радиусы вписанной и описанной окружности и т.д. Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз: Это одна из самых сложных задачи в профильном ЕГЭ. Полные 3 балла за эту задачу получают менее 1% выпускников! Основная сложность – построение доказательств. Баллы здесь снимают за любой пропущенный шаг доказательства. Например, нам часто кажется очевидным, что треугольники на рисунке подобны и мы забываем указать, по какому признаку. И за это нам снимут баллы. В этом видео вы научитесь применять подобие треугольников для доказательств, указывать признаки подобия и доказывать каждое умозаключение. Вы научитесь правильно записывать решение задачи, сокращать записи чтобы не тратить время на выписывание всех своих мыслей или полных названий теорем. Вы научитесь также применять подобие треугольников для расчетных задач (не только для доказательств). Подобные треугольники — треугольники, у которых углы соответственно равны, а стороны одного соответственно пропорциональны сторонам другого треугольника. Сходственные (или соответственные) стороны подобных треугольников — стороны, лежащие напротив равных углов. I признак подобия треугольников Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны. II признак подобия треугольников Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны. 1. Прямая, параллельная стороне треугольника, отсекает от него треугольник, подобный данному. 2. Треугольники и , образованные отрезками диагоналей и основаниями трапеции, подобны. Коэффициент подобия – 3. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобных исходному. Чтобы не потерять страничку, вы можете сохранить ее у себя: Помогите пожалуйста решить вот такую задачу окруж. пересекает АВ и АС в точках К и Р соответственно и проходит через вершины В и С. Найдите длину отрезка КР если АК=14, а сторона АС в 2 раза больше ВС. Буду очень благодарна. Спасибо Треугольники AKP,ACB подобны по двум углам. очень интересная и полезная информация спасибо Найти отношение периметров подобных треугольников ∆ и ∆, Не понятно, что такое 18 и 6… Найти отношение периметров подобных треугольников ∆ и ∆, Найти отношение периметров подобных треугольников ∆АВС и ∆КМН, Отношение периметров подобных треугольников равно коэффициенту подобия. В прямоугольном треугольнике ABC (LC = 90°) BD — биссектриса. Площади треугольников ABD и BCD относятся как 17:8. Найдите синус угла ABC. Добрый вечер, помогите пожалуйста решить такую задачу: Пусть . Тогда и Почему треугольник LMN равнобедренный? Даша, вы про какую задачу Про эту, конечно же. Которая с трапецией. Не всегда вижу, к чему идет коммент… Помогите решить задачу:Стороны прямоугольника пропорциональны числам 3,4,5.Какими будут стороны подобного ему треугольника с периметром 58,5. Прямоугольник не может быть подобен треугольнику. Видимо, имелось ввиду – Стороны прямоугольного треугольника пропорциональны числам 3,4,5. 2. Треугольники AOD и COB, образованные отрезками диагоналей и основаниями трапеции, подобны. Коэффициент подобия –если я найду k мне еще надо найти сторону то как? Вопрос неточен… Нет конкретики. Добрый вечер. Помогите пожалуйста решить эту задачу: в треугольнике АВС угол С – прямой, АС=4. Чему равно расстояние от вершины В до биссектрисы угла А, если расстояние от вершины С до этой биссектрисы равно 2? Пусть – перпендикуляры к биссектрисе угла . Помогите срочно. доказать,что отношение соответствующих биссектрис в подобных треугольниках равно коэффициэнту подобия В параллелограмме ABCD точка К лежит на стороне AD. Отрезок СК пересекает диагональ BD в точке N. Найдите длину диагонали BD, если известно, что ВС=10см, АК=4см, BN=7см. Помог ите решить, там через подобие Треугольники BCN,DKN подобны по двум углам. BN:DN=BC:DK, то есть 7:DN=10:6 Помогите пожалуйста решить задачу. Треугольники АВС И EFG подобны, стороны АВ и EF – сходственные, AB:EF = 1:4. Стороны треугольника АВС равны 5,7,9. Найдите наименьшую сторону треугольника EFG. Стороны треугольника EFG – 20, 28, 36 (каждая сторона в 4 раза больше соответствующей стороны треугольника ABC). Как правило, два треугольника считаются подобными если они имеют одинаковую форму, даже если они различаются размерами, повернуты или даже перевернуты. Два треугольника являются подобными если: 1. Каждый угол одного треугольника равен соответствующему углу другого треугольника: 2. Отношения сторон одного треугольника к соответствующим сторонам другого треугольника равны между собой: Не нужно путать подобные треугольники с равными треугольниками. У равных треугольников равны соответствующие длины сторон. Поэтому для равных треугольников: Из этого следует что все равные треугольники являются подобными. Однако не все подобные треугольники являются равными. Несмотря на то, что вышеприведенная запись показывает, что для выяснения, являются ли два треугольника подобными или нет, нам должны быть известны величины трех углов или длины трех сторон каждого треугольника, для решения задач с подобными треугольниками достаточно знать любые три величины из указанных выше для каждого треугольника. Эти величины могут составлять различные комбинации: 1) три угла каждого треугольника (длины сторон треугольников знать не нужно). 2) длины сторон каждого треугольника (углы знать не нужно); 3) длины двух сторон и угол между ними. Далее мы рассмотрим решение некоторых задач с подобными треугольниками. Сначала мы рассмотрим задачи, которые можно решить непосредственным использованием вышеуказанных правил, а затем обсудим некоторые практические задачи, которые решаются по методу подобных треугольников. Пример №1: Покажите, что два треугольника на рисунке внизу являются подобными. Решение: Пример №2: Покажите, что два данных треугольника являются подобными и определите длины сторон PQ и PR. Из этого следует, что треугольники ΔABC и ΔPQR подобны. Следовательно: Пример №3: Определите длину AB в данном треугольнике. Решение: ∠ABC = ∠ADE, ∠ACB = ∠AED и ∠A общий => треугольники ΔABC и ΔADE являются подобными. $\frac Пример №4:Определить длину AD (x) геометрической фигуры на рисунке. Треугольники ΔABC и ΔCDE являются подобными так как AB || DE и у них общий верхний угол C. AB || DE, CD || AC и BC || EC Исходя из вышеизложенного и учитывая наличие общего угла C, мы можем утверждать, что треугольники ΔABC и ΔCDE подобны. Пример №5: На фабрике используется наклонная конвеерная лента для транспортировки продукции с уровня 1 на уровень 2, который выше уровня 1 на 3 метра, как показано на рисунке. Наклонный конвеер обслуживается с одного конца до уровня 1 и с другого конца до рабочего места, расположенного на расстоянии 8 метров от рабочей точки уровня 1. Фабрика хочет модернизировать конвеер для доступа к новому уровню, который находится на расстоянии 9 метров над уровнем 1, и при этом сохранить угол наклона конвеера. Определите расстояние, на котором нужно установить новый рабочий пункт для обеспечения работы конвеера на его новом конце на уровне 2. Также вычислите дополнительное расстояние, которое пройдет продукция при перемещении на новый уровень. Решение: Для начала давайте обозначим каждую точку пересечения определенной буквой, как показано на рисунке. Исходя из рассуждений, приведенных выше в предыдущих примерах, мы можем сделать вывод о том, что треугольники ΔABC и ΔADE являются подобными. Следовательно, Таким образом, новый пункт должен быть установлен на расстоянии 16 метров от уже существующего пункта. А так как конструкция состоит из прямоугольных треугольников, мы можем вычислить расстояние перемещения продукции следующим образом: Пример №6: Стив хочет навестить своего приятеля, который недавно переехал в новый дом. Дорожная карта проезда к дому Стива и его приятеля вместе с известными Стиву расстояниями показана на рисунке. Помогите Стиву добраться к дому его приятеля наиболее коротким путем. Решение: Дорожную карту можно геометрически представить в следующем виде, как показано на рисунке. Мы видим, что треугольники ΔABC и ΔCDE подобны, следовательно: В условии задачи сказано, что: AB = 15 км, AC = 13.13 км, CD = 4.41 км и DE = 5 км Используя эту информацию, мы можем вычислить следующие расстояния: Стив может добраться к дому своего друга по следующим маршрутам: Следовательно, маршрут №3 является наиболее коротким и может быть предложен Стиву. Пример 7: Высота дерева равна 2.8 м, а высота уровня глаз Триши равна 1.6 м. Помогите Трише определить высоту здания. Решение: Геометрическое представление задачи показано на рисунке. Сначала мы используем подобность треугольников ΔABC и ΔADE. $\frac Затем мы можем использовать подобность треугольников ΔACB и ΔAFG или ΔADE и ΔAFG. Давайте выберем первый вариант. Признака подобия треугольников Две фигуры `F` и `F’` называются подобными, если они переводятся друг в друга преобразованием подобия, т. е. таким преобразованием, при котором расстояния между точками изменяются (увеличиваются или уменьшаются) в одно и то же число раз. Если фигуры `F` и `F’` подобны, то пишется `F F’`. Напомним, что запись подобия треугольников `Delta ABC Из свойств преобразования подобия следует, что у подобных фигур соответствующие углы равны, а соответствующие отрезки пропорциональны. В частности, если `Delta ABC Delta A_1B_1C_1`, то `/_ A = /_ A_1`, `/_ B = /_ B_1`, `/_ C = /_ C_1`, `A_1B_1 : AB = B_1C_1 : BC = C_1A_1 : CA`. Два треугольника подобны, если: 1. два угла одного соответственно равны двум углам другого; 2. две стороны одного пропорциональны двум сторонам другого и углы, образованные этими сторонами, равны; 3. три стороны одного треугольника пропорциональны трём сторонам другого. В решении задач и доказательстве теорем часто используется утверждение, которое, чтобы не повторять каждый раз, докажем сейчас отдельно. Если две стороны треугольника пересекает прямая, параллельная третьей стороне (рис. 9), то она отсекает треугольник, подобный данному. Действительно, из параллельности `MN` и `AC` следует, что углы `1` и `2` равны. Треугольники `ABC` и `MBN` имеют два равных угла: общий угол при вершине `B` и равные углы `1` и `2`. По первому признаку эти треугольники подобны. И сразу применим это утверждение в следующем примере, в котором устанавливается важное свойство трапеции. Прямая, проходящая через точку пересечения диагоналей трапеции параллельно её основаниям, пересекает боковые стороны трапеции в точках `M` и `N`. Найти длину отрезка `MN`, если основания трапеции равны `a` и `b`. Delta COB` по двум углам (рис. 10б): `(OD)/(OB) = (AD)/(BC)`, то есть `(OD)/(OB) = a/b`. 3. Учитывая, что `BD = BO + OD` находим отношение `(BO)/(BD) = (BO)/(BO + OD) = 1/(1 + OD//BO) = b/(a + b)`. Подставляя это в (1), получаем `MO = (ab)/(a + b)`; аналогично устанавливаем, что `ON = (ab)/(a + b)`, таким образом `MN = (2ab)/(a + b)`. Delta MBF`. Из подобия следует `(AE)/(MF) = (AM)/(MB) = 1/3`. Напомним, что отношение периметров подобных треугольников равно отношению их сходственных сторон. Верно также следующее утверждение: отношение медиан, биссектрис и высот, проведённых к сходственным сторонам в подобных треугольниках, равно отношению сходственных сторон. Отношение радиусов вписанных окружностей, как и отношение радиусов описанных окружностей, в подобных треугольниках также равно отношению сходственных сторон. Попытайтесь доказать это самостоятельно. Прямоугольные треугольники подобны, если: 1. они имеют по равному острому углу; 2. катеты одного треугольника пропорциональны катетам другого; 3. гипотенуза и катет одного треугольника пропорциональны гипотенузе и катету другого. Два первых признака следуют из первого и второго признаков подобия треугольников, поскольку прямые углы равны. Третий признак следует, например, из второго признака подобия и теоремы Пифагора. Заметим, что высота прямоугольного треугольника, опущенная на гипотенузу, разбивает его на два прямоугольных треугольника, подобных между собой и подобных данному. Доказанные в § 1 метрические соотношения Свойств 1, 2, 3 можно доказать, используя подобие указанных треугольников. СВОЙСТВА ВЫСОТ И БИССЕКТРИС Если в треугольнике `ABC` нет прямого угла, `A A_1` и `BB_1` — его высоты, то `Delta A_1B_1C Delta ABC` (этот факт можно сформулировать так: если соединить основания двух высот, то образуется треугольник, подобный данному). Как всегда, полагаем `AB = c`, `BC = a`, `AC = b`. В треугольниках `A_1 B_1C` и `ABC` угол `C` общий, прилежащие стороны пропорциональны: `(A_1C)/(AC) = (B_1C)/(BC) = cos C`. Таким образом, `Delta A_1 B_1 C $$\left.\begin коэффициент подобия `ul (cos C)`, `/_ A_1 B_1 C = /_B`. $$\left.\begin с коэффициентом подобия `ul (k = |cos C|`, `(/_A_1B_1C=/_B)`. В остроугольном треугольнике `ABC` проведены высоты `A A_1`, `B B_1`, `C C_1` (рис. 13). Треугольник, вершинами которого служат основания высот, называется «высотным» треугольником (или ортотреугольником). Доказать, что лучи `A_1 A`, `B_1 B` и `C_1 C` являются биссектрисами углов высотного треугольника `A_1 B_1 C_1` (т. е. высоты остроугольного треугольника являются биссектрисами ортотреугольника). По первой лемме о высотах `Delta A_1 B_1 C Delta ABC`, `/_ A_1 B_1 C = /_ B`. Аналогично `Delta AB_1C_1 Delta ABC`, `/_ AB_1 C_1 = /_ B`, т. е. `/_A_1 B_1C = /_ AB_1 C_1`. Высоты `A A_1`, `B B_1` треугольника `ABC` пересекаются в точке `H` (рис. 14). Доказать, что имеет место равенство `AH * H A_1 = BH * HB_1`, т. е. произведение отрезков одной высоты равно произведению отрезков другой высоты. Delta BHA_1`, имеют по равному острому углу при вершине `H` (заметим, что этот угол равен углу `C`). Из подобия следует `(AH)/(BH) = (HB_1)/(HA_1)`, откуда `AH * HA_1 = BH * HB_1`. Для тупоугольного треугольника утверждение также верно. Попробуйте доказать самостоятельно. Высоты `A A_1` и `B B_1` треугольника `ABC` пересекаются в точке `H`, при этом `BH = HB_1` и `AH = 2 HA_1` (рис. 15). Найти величину угла `C`. Установим ещё одно свойство биссектрисы угла треугольника. Биссектриса треугольника делит одну из сторон треугольника на отрезки длиной `3` и `5`. Найти в каких пределах может изменяться периметр треугольника. По свойству биссектрисы `AB : AC = 3:5`. Положим `AB = 3x`, тогда `AC = 5x`. Каждая сторона треугольника должна быть меньше суммы двух других сторон, т. е. `ul (5x 1`. Периметр треугольника `P = 8 + 8x = 8(1 + x)`, поэтому `ul (16__<<_<1>><_<1>><Подобные треугольники — подробнее
Признак подобия треугольников «по двум углам»
Признак подобия треугольников «две пропорциональные стороны и угол между ними»
Признак подобия треугольников «три пропорциональные стороны»
Самый главный «секрет» подобия треугольников
Читать далее…
Бонус: Вебинар из нашего курса подготовки к ЕГЭ по математике
ЕГЭ 16. Подобие треугольников. Задачи на доказательство
Подобные треугольники
Определение
Признаки подобия треугольников
Свойства подобных треугольников
Примеры наиболее часто встречающихся подобных треугольников
AK:AC=KP:BС, откуда KP=7.
если = 18, = 6.
Помогите)
если = 18см, = 6см.
если ВС = 18, КМ = 6.
Коэффициент подобия в вашем случае, судя по-всему, равен 3.
По хорошему, если BC и KM сходственные стороны, то следовало бы написать вместо ∆KMH – ∆HKM…
Стороны KN и LM трапеции KLMN параллельны, прямые LM и MN – касательные к окружности, описанной около треугольника KLN/
a) Докажите, что треугольники LMN и KLN подобны
Треугольник – равнобедренный.
Но и – равнобедренный, так как вписанный угол опирается на дугу в (подумайте, почему…).
Итак, треугольники указанные подобны, так как оба равнобедренные с равными углами при основании (то есть по двум углам).
Потому что по условию MN,ML – касательные к окр. По свойству отрезков касательных.
Пусть – коэффициент подобия. Тогда стороны второго треугольника –
А поскольку его периметр – то
…
В треугольнике гипотенуза вдвое больше катета , поэтому
Тогда Стало быть,
В треугольнике также есть угол в 30 градусов. Тогда
Дальше сами…
Думаю, наименьшее из трех чисел выбрать не сложно.Подобные треугольники
Определение
∠A1 = ∠A2, ∠B1 = ∠B2 и∠C1 = ∠C2
$\fracПрактические задачи с подобными треугольниками
Так как длины сторон обоих треугольников известны, то здесь можно применить второе правило:
$\frac
Мы видим, что один треугольник является масштабированной версией другого. Однако нам нужно это доказать математически.
∠BAC = ∠EDC и ∠ABC = ∠DECПрактические примеры
$\frac
Триша хочет измерить высоту дома, но у нее нет нужных инструментов. Она заметила, что перед домом растет дерево и решила применить свою находчивость и знания геометрии, полученные в школе, для определения высоты здания. Она измерила расстояние от дерева до дома, результат составил 30 м. Затем она встала перед деревом и начала отходить назад, пока верхний край здания стал виден над верхушкой дерева. Триша отметила это место и измерила расстояние от него до дерева. Это расстояние составило 5 м.
Как определить что треугольники подобны
а) Треугольник `ABC` остроугольный (рис. 12а).
\Delta AA_1C, \angle A_1 =90^\circ \Rightarrow A_1C=AC\cdot \cos C =b \cos C;\\
\Delta BB_1C, \angle B_1 =90^\circ \Rightarrow B_1C=BC\cdot \cos C =a \cos C,
\end
\right\>\Rightarrow \Delta A_1B_1C\sim \Delta ABC,$$
\Delta AA_1C, \angle A_1 =90^\circ \Rightarrow A_1C=AC\cdot \cos\varphi =b |\cos C|;\\
\Delta BB_1C, \angle B_1 =90^\circ \Rightarrow B_1C=BC\cdot \cos\varphi =b |\cos C|,
\end
\right\>\Rightarrow \Delta A_1B_1C\sim \Delta ABC$$