Математика mod что это

Mod и остаток — не одно и то же

Математика mod что это. Смотреть фото Математика mod что это. Смотреть картинку Математика mod что это. Картинка про Математика mod что это. Фото Математика mod что это

Приготовьтесь, вас ждёт крайне педантичная статья, которая вполне может спасти вас на собеседовании или сэкономить несколько часов при вылавливании бага в продакшне!

Я сейчас активно работаю над вторым сезоном «Руководства для самозванца» и пишу о шифре RSA для SSH, который, очевидно, является самым загружаемым фрагментом кода в истории IT.

Хочется полностью разобраться в этой истории. Кто придумал этот шифр, как он работает, почему работает и будет ли работать в будущем. Сейчас я раскопал одну чертовски интересную историю. Я не криптоманьяк и вижу, как других буквально засасывает в эту область. Но мне это тоже интересно, потому что повсюду есть маленькие норки, а меня как сороку привлекают блестящие штучки в глубоких норках. Я также очень хорош в метафорах.

В любом случае: на прошлой неделе я узнал что-то странное и хочу поделиться: оказывается, mod и остаток от деления — не одно и то же. Действительно забавно то, что некоторые читатели при этих словах выпрыгивают со своих кресел и орут: «А ведь именно это я всегда пытался сказать вам и всем остальным!»

Позовите ребят из секты «mod не остаток»! Это для вас.

Что такое mod?

Я должен был изучить это, как и в прошлый раз, когда всплыла такая тема. Это одна из тех вещей, которые ты знаешь, но не запоминаешь. Когда вы применяете mod, то делите одно число на другое и берёте остаток. Итак: 5 mod 2 будет 1, потому что 5/2=2 с остатком 1.

Вот где мы попадаем в странную серую область.

Математика циферблата

Криптографам нравится эта идея, потому что они могут использовать деление с остатком с гигантскими простыми числами для генерации криптографических ключей. Это совсем другая история: если хотите прочитать об этом, то можете купить книгу или, ещё лучше, поддержать мои усилия написать её.

Впрочем, не будем отклоняться от темы.

Остатки и математика циферблата

Теперь переходим к сути: modulo и простой остаток одинаковы, когда числа положительны, но отличаются в случае отрицательных чисел.

Рассмотрим такую задачу:

JavaScript с этим согласен:

Математика mod что это. Смотреть фото Математика mod что это. Смотреть картинку Математика mod что это. Картинка про Математика mod что это. Фото Математика mod что это

Математика mod что это. Смотреть фото Математика mod что это. Смотреть картинку Математика mod что это. Картинка про Математика mod что это. Фото Математика mod что это

Google согласен с первым утверждением, но не согласен со вторым:

Математика mod что это. Смотреть фото Математика mod что это. Смотреть картинку Математика mod что это. Картинка про Математика mod что это. Фото Математика mod что это

Ruby согласен с Google:

Математика mod что это. Смотреть фото Математика mod что это. Смотреть картинку Математика mod что это. Картинка про Математика mod что это. Фото Математика mod что это

Во имя Дейкстры, что здесь происходит?

Вращение часов назад

Чтобы ответить на вопрос, следует понять разницу между остатком и modulo. Программисты объединяют эти операции, но не должны этого делать, потому что они дают одинаковый результат только в случае, если делитель (в нашем случае 12) положителен. Вы можете легко отправить баги в продакшн, если делитель отрицательный.

Но почему существует разница? Рассмотрим положительный делитель 19 mod 12 на часах:

Математика mod что это. Смотреть фото Математика mod что это. Смотреть картинку Математика mod что это. Картинка про Математика mod что это. Фото Математика mod что это

Математика mod что это. Смотреть фото Математика mod что это. Смотреть картинку Математика mod что это. Картинка про Математика mod что это. Фото Математика mod что это

Это известная вещь

Прежде чем назвать меня сумасшедшим и начать гуглить тему: это известный факт. На самом деле MDN (Mozilla Developer Network) даже дошла до того, чтобы назвать % операцией «остатка» (remainder), а не modulo:

Оператор remainder возвращает остаток от деления одного операнда на другой. Он всегда принимает знак делимого.

Вот что Эрик Липперт, один из богов C#, говорит о modulo в C#:

Однако это совсем не то, что оператор % реально делает в C#. Оператор % не является каноническим оператором modulus, это оператор остатка.

А как на вашем языке?

Ну и что?

Могу понять, если вы дочитали досюда, а теперь чешете голову и задаётесь вопросом, стоит ли беспокоиться. Думаю, что стоит по двум причинам:

Источник

Математика mod что это

ВНИМАНИЕ! В связи с новой волной пандемии и шумом вокруг вакцинации агрессивные антивакцинаторы банятся без предупреждения, а их особенно мракобесные комментарии — скрываются.

Основные условия публикации

— Посты должны иметь отношение к науке, актуальным открытиям или жизни научного сообщества и содержать ссылки на авторитетный источник.

— Посты должны по возможности избегать кликбейта и броских фраз, вводящих в заблуждение.

— Научные статьи должны сопровождаться описанием исследования, доступным на популярном уровне. Слишком профессиональный материал может быть отклонён.

— Видеоматериалы должны иметь описание.

— Названия должны отражать суть исследования.

— Если пост содержит материал, оригинал которого написан или снят на иностранном языке, русская версия должна содержать все основные положения.

Не принимаются к публикации

Точные или урезанные копии журнальных и газетных статей. Посты о последних достижениях науки должны содержать ваш разъясняющий комментарий или представлять обзоры нескольких статей.

— Юмористические посты, представляющие также точные и урезанные копии из популярных источников, цитаты сборников. Научный юмор приветствуется, но должен публиковаться большими порциями, а не набивать рейтинг единичными цитатами огромного сборника.

— Посты с вопросами околонаучного, но базового уровня, просьбы о помощи в решении задач и проведении исследований отправляются в общую ленту. По возможности модерация сообщества даст свой ответ.

— Оскорбления, выраженные лично пользователю или категории пользователей.

— Попытки использовать сообщество для рекламы.

— Многократные попытки публикации материалов, не удовлетворяющих правилам.

— Нарушение правил сайта в целом.

Окончательное решение по соответствию поста или комментария правилам принимается модерацией сообщества. Просьбы о разбане и жалобы на модерацию принимает администратор сообщества. Жалобы на администратора принимает @SupportComunity и общество пикабу.

Источник

Оператор mod — остаток от деления. Что такое mod?

Оператор mod обозначается символом % и является оператором деления по модулю. Он возвращает остаток от деления 1-го операнда на 2-й и широко используется в разных языках программирования для решения ряда задач.

Оператор mod в Java

В Java operator mod может работать как с целыми числами (byte/int/short/long), так и с плавающей точкой (byte/int/short/long). Давайте приведём пример работы оператора mod при делении:

После выполнения этой программы вы получите результат следующего вида:

Как видим, оператор mod — это прекрасный способ найти остаток от деления. Зачем это может понадобиться на практике? Например, при нахождении кратности числа и определении, является ли некоторое число, введённое с клавиатуры, чётным. Также с помощью оператора mod можно узнать, делится ли одно число на другое без остатка или определить последнюю цифру числа. В общем, оператор mod очень полезен при решении различных задач по программированию.

Оператор mod в SQL

Не менее интересно использование mod в базах данных. Аналогично, mod находит остаток от деления. При этом вместо mod можно задействовать операцию %, делающую то же самое. Синтаксис в SQL следующий:

Но можно написать и иначе, используя % :

Давайте приведём пример использования mod в базах данных. Вот, например, таблица numbers:

Математика mod что это. Смотреть фото Математика mod что это. Смотреть картинку Математика mod что это. Картинка про Математика mod что это. Фото Математика mod что это

Найдём остаток от деления столбца number на три:

В результате запрос SQL выберет следующие строки:

Математика mod что это. Смотреть фото Математика mod что это. Смотреть картинку Математика mod что это. Картинка про Математика mod что это. Фото Математика mod что это

Но, как мы уже говорили выше, этот же запрос можно без проблем переписать:

Идём дальше. Теперь возьмём таблицу посложнее:

Математика mod что это. Смотреть фото Математика mod что это. Смотреть картинку Математика mod что это. Картинка про Математика mod что это. Фото Математика mod что это

Здесь найдём остаток от деления столбца number1 на number2:

Получим следующие строки:

Математика mod что это. Смотреть фото Математика mod что это. Смотреть картинку Математика mod что это. Картинка про Математика mod что это. Фото Математика mod что это

Опять же, этот же самый запрос можно оформить иначе:

А где вы используете mod? Пишите в комментариях!

Источник

Модульная арифметика

2.2. Модульная арифметика

Операции по модулю

Математика mod что это. Смотреть фото Математика mod что это. Смотреть картинку Математика mod что это. Картинка про Математика mod что это. Фото Математика mod что это

Как показано на рис. 2.9, оператор по модулю ( mod ) выбирает целое число ( a ) из множества Z и положительный модуль ( n ). Оператор определяет неотрицательный остаток ( r ).

Мы можем сказать, что

Найти результат следующих операций:

Система вычетов: Zn

Математика mod что это. Смотреть фото Математика mod что это. Смотреть картинку Математика mod что это. Картинка про Математика mod что это. Фото Математика mod что это

Сравнения

Математика mod что это. Смотреть фото Математика mod что это. Смотреть картинку Математика mod что это. Картинка про Математика mod что это. Фото Математика mod что это

Рисунок 2.11 показывает принцип сравнения. Мы должны объяснить несколько положений.

Математика mod что это. Смотреть фото Математика mod что это. Смотреть картинку Математика mod что это. Картинка про Математика mod что это. Фото Математика mod что это

Система вычетов

Круговая система обозначений

Математика mod что это. Смотреть фото Математика mod что это. Смотреть картинку Математика mod что это. Картинка про Математика mod что это. Фото Математика mod что это

Операции в Zn

Математика mod что это. Смотреть фото Математика mod что это. Смотреть картинку Математика mod что это. Картинка про Математика mod что это. Фото Математика mod что это

Выполните следующие операторы (поступающие от Zn ):

а. Сложение 7 и 14 в Z15

б. Вычитание 11 из 7 в Z13

в. Умножение 11 на 7 в Z20

Ниже показаны два шага для каждой операции:

Выполните следующие операции (поступающие от Zn ):

a. Сложение 17 и 27 в Z14

b. Вычитание 43 из 12 в Z13

Ниже показаны два шага для каждой операции:

Свойства

Математика mod что это. Смотреть фото Математика mod что это. Смотреть картинку Математика mod что это. Картинка про Математика mod что это. Фото Математика mod что это

Первое свойство: (a + b) mod n = [(a mod n) + (b mod n)] mod n

Третье свойство: (a x b) mod n = [(a mod n) x (b mod n)] mod n

Рисунок 2.14 показывает процесс до и после применения указанных выше свойств. Хотя по рисунку видно, что процесс с применением этих свойств более длинен, мы должны помнить, что в криптографии мы имеем дело с очень большими целыми числами. Например, если мы умножаем очень большое целое число на другое очень большое целое число, которое настолько большое, что не может быть записано в компьютере, то применение вышеупомянутых свойств позволяет уменьшить первые два операнда прежде, чем начать умножение. Другими словами, перечисленные свойства позволяют нам работать с меньшими числами. Этот факт станет понятнее при обсуждении экспоненциальных операций в последующих лекциях.

Следующие примеры показывают приложение вышеупомянутых свойств.

Источник

Деление чисел с остатком

Математика mod что это. Смотреть фото Математика mod что это. Смотреть картинку Математика mod что это. Картинка про Математика mod что это. Фото Математика mod что это

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Деление с остатком целых положительных чисел

Деление — это разбиение целого на равные части.

Остаток от деления — это число, которое образуется при делении с остатком. То есть то, что «влезло» и осталось, как хвостик.

Чтобы научиться делить числа с остатком, нужно усвоить некоторые правила. Начнем!

Все целые положительные числа являются натуральными. Поэтому деление целых чисел выполняется по всем правилам деления с остатком натуральных чисел.

Попрактикуемся в решении.

Пример

Разделить 14671 на 54.

Выполним деление столбиком:

Математика mod что это. Смотреть фото Математика mod что это. Смотреть картинку Математика mod что это. Картинка про Математика mod что это. Фото Математика mod что это

Неполное частное равно 271, остаток — 37.

Ответ: 14671 : 54 = 271(остаток 37).

Деление с остатком положительного числа на целое отрицательное

Чтобы легко выполнить деление с остатком положительного числа на целое отрицательное, обратимся к правилу:

В результате деления целого положительного a на целое отрицательное b получаем число, которое противоположно результату от деления модулей чисел a на b. Тогда остаток равен остатку при делении |a| на |b|.

Неполное частное — это результат деления с остатком. Обычно в ответе записывают целое число и рядом остаток в скобках.

Это правило можно описать проще: делим два числа со знаком «плюс», а после подставляем «минус».

Все это значит, что «хвостик», который у нас остается, когда делим положительное число на отрицательное — всегда положительное число.

Алгоритм деления положительного числа на целое отрицательное (с остатком):

Пример

Разделить 17 на −5 с остатком.

Применим алгоритм деления с остатком целого положительного числа на целое отрицательное.

Разделим 17 на − 5 по модулю. Отсюда получим, что неполное частное равно 3, а остаток равен 2. Получим, что искомое число от деления 17 на − 5 = − 3 с остатком 2.

Ответ: 17 : (− 5) = −3 (остаток 2).

Деление с остатком целого отрицательного числа на целое положительное

Чтобы быстро разделить с остатком целое отрицательное число на целое положительное, тоже придумали правило:

Чтобы получить неполное частное с при делении целого отрицательного a на положительное b, нужно применить противоположное данному числу и вычесть из него 1. Тогда остаток d будет вычисляться по формуле:

d = a − b * c

Из правила делаем вывод, что при делении получается целое неотрицательное число.

Для точности решения применим алгоритм деления а на b с остатком:

Рассмотрим пример, где можно применить алгоритм.

Пример

Найти неполное частное и остаток от деления −17 на 5.

Разделим заданные числа по модулю.

Получаем, что при делении частное равно 3, а остаток 2.

Так как получили 3, противоположное ему −3.

Необходимо отнять единицу: −3 − 1 = −4.

Чтобы вычислить остаток, необходимо a = −17, b = 5, c = −4, тогда:

d = a − b * c = −17 − 5 * (−4) = −17 − (− 20) = −17 + 20 = 3.

Значит, неполным частным от деления является число −4 с остатком 3.

Ответ: (−17) : 5 = −4 (остаток 3).

Деление с остатком целых отрицательных чисел

Сформулируем правило деления с остатком целых отрицательных чисел:

Для получения неполного частного с от деления целого отрицательного числа a на целое отрицательное b, нужно произвести вычисления по модулю, после чего прибавить 1. Тогда можно произвести вычисления по формуле:

d = a − b * c

Из правила следует, что неполное частное от деления целых отрицательных чисел — положительное число.

Алгоритм деления с остатком целых отрицательных чисел:

Пример

Найти неполное частное и остаток при делении −17 на −5.

Применим алгоритм для деления с остатком.

Разделим числа по модулю. Получим, что неполное частное равно 3, а остаток равен 2.

Сложим неполное частное и 1: 3 + 1 = 4. Из этого следует, что неполное частное от деления заданных чисел равно 4.

Для вычисления остатка применим формулу. По условию a = −17, b = −5, c = 4, тогда получим d = a − b * c = −17 − (−5) * 4 = −17 − (−20) = −17 + 20 = 3.

Получилось, что остаток равен 3, а неполное частное равно 4.

Ответ: (−17) : (−5) = 4 (остаток 3).

Деление с остатком с помощью числового луча

Деление с остатком можно выполнить и на числовом луче.

Пример 1

Рассмотрим выражение: 10 : 3.

Отметим на числовом луче отрезки по 3 деления. Видим, что три деления помещаются полностью три раза и одно деление осталось.

Математика mod что это. Смотреть фото Математика mod что это. Смотреть картинку Математика mod что это. Картинка про Математика mod что это. Фото Математика mod что это

Решение: 10 : 3 = 3 (остаток 1).

Пример 2

Рассмотрим выражение: 11 : 3.

Отметим на числовом луче отрезки по 3 деления. Видим, что три деления поместились три раза и два деления осталось.

Математика mod что это. Смотреть фото Математика mod что это. Смотреть картинку Математика mod что это. Картинка про Математика mod что это. Фото Математика mod что это

Решение: 11 : 3 = 3 (остаток 2).

Проверка деления с остатком

Пока решаешь пример, бывает всякое: то в окно отвлекся, то друг позвонил. Чтобы убедиться в том, что все правильно, важно себя проверять. Особенно ученикам 5 класса, которые только начали проходить эту тему.

Формула деления с остатком

a = b * c + d,

где a — делимое, b — делитель, c — неполное частное, d — остаток.

Эту формулу можно использовать для проверки деления с остатком.

Пример

Рассмотрим выражение: 15 : 2 = 7 (остаток 1).

В этом выражении: 15 — это делимое, 2 — делитель, 7 — неполное частное, а 1 — остаток.

Чтобы убедиться в правильности ответа, нужно неполное частное умножить на делитель (или наоборот) и к полученному произведению прибавить остаток. Если в результате получится число, которое равно делимому, то деление с остатком выполнено верно. Вот так:

Теорема о делимости целых чисел с остатком

Если нам известно, что а — это делимое, тогда b — это делитель, с — неполное частное, d — остаток. И они между собой связаны. Эту связь можно описать через теорему о делимости с остатком и показать при помощи равенства.

Теорема

Любое целое число может быть представлено только через целое и отличное от нуля число b таким образом:

где q и r — это некоторые целые числа. При этом 0 ≤ r ≤ b.

Доказательство:

Если существуют два числа a и b, причем a делится на b без остатка, тогда из определения следует, что есть число q, и будет верно равенство a = b * q. Тогда равенство можно считать верным: a = b * q + r при r = 0.

Тогда необходимо взять q такое, чтобы данное неравенством b * q

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *