На что делится 390

Информация о числах

Свойства и характеристики одного числа
Все делители числа, сумма и произведение цифр, двоичный вид, разложение на простые множители.

Свойства пары чисел
Наименьшее общее кратное, наибольший общий делитель, сумма, разность и произведение чисел.

Сейчас изучают числа:

Число 390

Триста девяносто

RGB(0, 1, 134) или #000186Наибольшая цифра в числе
(возможное основание)9 (10, десятичный вид)Число Фибоначчи?НетНумерологическое значение3
детское начало, дружба, радость, позитивность, оптимизм, удача, везение, романтика, общительность, беззаботность, творчествоСинус числа0.42820991051876856Косинус числа0.9036792973912307Тангенс числа0.4738516327141035Натуральный логарифм5.966146739123692Десятичный логарифм2.591064607026499Квадратный корень19.748417658131498Кубический корень7.306143574062803Квадрат числа152100Перевод из секунд6 минут 30 секундДата по UNIX-времениThu, 01 Jan 1970 00:06:30 GMTMD5a01a0380ca3c61428c26a231f0e49a09SHA1f369b411c5eb95ab252e1ab9de70f787fa720784Base64MzkwQR-код числа 390

Описание числа 390

Число 390 не является числом Фибоначчи.

Синус числа 390: 0.4282, косинус числа 390: 0.9037, тангенс числа 390: 0.4739. Натуральный логарифм числа равен 5.9661. Десятичный логарифм числа: 2.5911. 19.7484 это корень квадратный из числа 390, 7.3061 — кубический. Число 390 в квадрате это 1.5210e+5.

Источник

Нахождение всех делителей числа, число делителей числа

В данной статье мы поговорим о том, как найти все делители числа. Начнем с доказательства теоремы, с помощью которой можно задать вид всех делителей определенного числа. Далее возьмем примеры нахождения всех нужных делителей и покажем, как именно определить, сколько делителей имеет конкретное число. В последнем пункте подробно рассмотрим примеры задач на нахождение общих делителей нескольких чисел.

Как найти все делители числа

Сложнее определить все делители составного числа. Сформулируем теорему, которая лежит в основе данного действия.

Учитывая доказательство этой теоремы, мы можем сформировать схему нахождения всех положительных делителей данного числа.

Для этого нужно выполнить следующие действия:

Самым трудным в таком расчете является именно перебор всех комбинаций указанных значений. Разберем подробно решения нескольких задач, чтобы наглядно показать применение данной схемы на практике.

Решение

Для нахождения делителей удобно все полученные значения оформлять в виде таблицы:

Возьмем пример чуть сложнее: в нем при разложении числа получится не один, а два множителя.

Решение

Начнем с разложения данного числа на простые множители.

567 189 63 21 7 1 3 3 3 3 7

t 1t 23 t 1 · 7 t 2
003 0 · 7 0 = 1
013 0 · 7 1 = 7
103 1 · 7 0 = 3
113 1 · 7 1 = 21
203 2 · 7 0 = 9
213 2 · 7 1 = 63
303 3 · 7 0 = 27
313 3 · 7 1 = 189
403 4 · 7 0 = 81
413 4 · 7 1 = 567

Продолжим усложнять наши примеры – возьмем четырехзначное число.

Решение

t 1t 2t 3t 42 t 1 · 3 t 2 · 5 t 3 · 13 t 4
00002 0 · 3 0 · 5 0 · 13 0 = 1
00012 0 · 3 0 · 5 0 · 13 1 = 13
00102 0 · 3 0 · 5 1 · 13 0 = 5
00112 0 · 3 0 · 5 1 · 13 1 = 65
00202 0 · 3 0 · 5 2 · 13 0 = 25
00212 0 · 3 0 · 5 2 · 13 1 = 325
01002 0 · 3 1 · 5 0 · 13 0 = 3
01012 0 · 3 1 · 5 0 · 13 1 = 39
01102 0 · 3 1 · 5 1 · 13 0 = 15
01112 0 · 3 1 · 5 1 · 13 1 = 195
01202 0 · 3 1 · 5 2 · 13 0 = 75
01212 0 · 3 1 · 5 2 · 13 1 = 975
t 1t 2t 3t 42 t 1 · 3 t 2 · 5 t 3 · 13 t 4
10002 1 · 3 0 · 5 0 · 13 0 = 2
10012 1 · 3 0 · 5 0 · 13 1 = 26
10102 1 · 3 0 · 5 1 · 13 0 = 10
10112 1 · 3 0 · 5 1 · 13 1 = 130
10202 1 · 3 0 · 5 2 · 13 0 = 50
10212 1 · 3 0 · 5 2 · 13 1 = 650
11002 1 · 3 1 · 5 0 · 13 0 = 6
11012 1 · 3 1 · 5 0 · 13 1 = 78
11102 1 · 3 1 · 5 1 · 13 0 = 30
11112 1 · 3 1 · 5 1 · 13 1 = 390
11202 1 · 3 1 · 5 2 · 13 0 = 150
11212 1 · 3 1 · 5 2 · 13 1 = 1950
t 1t 2t 3t 42 t 1 · 3 t 2 · 5 t 3 · 13 t 4
20002 2 · 3 0 · 5 0 · 13 0 = 4
20012 2 · 3 0 · 5 0 · 13 1 = 52
20102 2 · 3 0 · 5 1 · 13 0 = 20
20112 2 · 3 0 · 5 1 · 13 1 = 260
20202 2 · 3 0 · 5 2 · 13 0 = 100
21012 2 · 3 0 · 5 2 · 13 1 = 1300
21002 2 · 3 1 · 5 0 · 13 0 = 12
21012 2 · 3 1 · 5 0 · 13 1 = 156
21102 2 · 3 1 · 5 1 · 13 0 = 60
21112 2 · 3 1 · 5 1 · 13 1 = 780
21202 2 · 3 1 · 5 2 · 13 0 = 300
21212 2 · 3 1 · 5 2 · 13 1 = 3900

Как определить количество делителей конкретного числа

Решение

Раскладываем число на множители.

84 42 21 7 1 2 2 3 7

Ответ: всего у 84 будет 24 делителя – 12 положительных и 12 отрицательных.

Как вычислить общие делители нескольких чисел

Зная свойства наибольшего общего делителя, можно утверждать, что количество делителей некоторого набора целых чисел будет совпадать с количеством делителей НОД тех же чисел. Это будет справедливо не только для двух чисел, но и для большего их количества. Следовательно, чтобы вычислить все общие делители нескольких чисел, надо определить их наибольший общий множитель и найти все его делители.

Разберем пару таких задач.

Решение

Для этого нам потребуется алгоритм Евклида:

Решение

Чтобы узнать количество этих чисел, нужно выяснить, сколько положительных делителей имеет НОД.

Ответ: у данных чисел шесть общих делителей.

Источник

Признаки делимости чисел

На что делится 390. Смотреть фото На что делится 390. Смотреть картинку На что делится 390. Картинка про На что делится 390. Фото На что делится 390

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Что такое «признак делимости»

Признак делимости числа — это такая особенность числа, которая еще до выполнения деления позволяет определить, кратно ли число делителю.

Истинный путь джедая, чтобы зря не пыхтеть над числами, которые в конечном итоге не делятся.

Однозначные, двузначные и трехзначные числа

Однозначное число — это такое число, в составе которого один знак (одна цифра). Девять однозначных натуральных чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9.

Двузначные числа — такие, в составе которых два знака (две цифры). Цифры могут повторяться или быть различными.

Трехзначные числа — числа, в составе которых три знака (три цифры).

Чётные и нечётные числа

Число называют четным тогда, когда оно делится на два без остатка. А нечетные числа — те, что на два без остатка не делятся. Все просто!

Признаки делимости чисел

Признак делимости на 2. Сразу можно сказать, что число делится на 2, если последняя цифра четная.

Признак делимости на 3. Сумма цифр числа должна делиться на 3.

Признаки делимости на 4. Число делится на 4, если две последние цифры — 0 или если они образуют цифру, которая делится на 4.

Признаки делимости на 5. Число делится на 5, если заканчивается на 0 или 5.

Признак делимости на 6. На 6 делятся те числа, которые могут одновременно делится на 2 и на 3.

Признаки делимости на 8. Число делится на 8, если три последних цифры — 0 или если они образуют число, которое делится на 8.

Признак делимости на 9. Число делится на 9, если сумма цифр делится на 9.

Признаки делимости на 10, 100. Числа, которые заканчиваются на 0, 00, 000 делятся на 10, 100, 1000 и так далее.

Источник

На что делится 390

Найдите трёхзначное число, сумма цифр которого равна 20, а сумма квадратов цифр делится на 3, но не делится на 9. В ответе укажите какое-нибудь одно такое число.

На шести карточках написаны цифры 2, 3, 5, 6, 7, 7 (по одной цифре на каждой карточке). В выражении

вместо каждого квадратика положили карточку из данного набора. Оказалось, что полученная сумма делится на 10, но не делится на 20. В ответе укажите какую-нибудь одну такую сумму.

Вычеркните в числе 75157613 три цифры так, чтобы получившееся число делилось на 12. В ответе укажите какое-нибудь одно получившееся число.

Разложим число 20 на слагаемые различными способами:

При разложении способами 1−4, 7 и 8 суммы квадратов чисел не кратны трём. При разложении пятым способом сумма квадратов кратна девяти. Разложение шестым способом удовлетворяет условиям задачи. Таким образом, условию задачи удовлетворяет любое число, записанное цифрами 5, 7 и 8, например, число 578.

Чтобы сумма делилась на 10 она должна заканчиваться на 0. Чтобы сумма не делилась на 20, вторая цифра с конца не должна быть четной (делиться на 2). Чтобы в конце суммы получить 0, можно выбрать следующие цифры: 2, 3, 5 и 6, 7, 7. Рассмотрим каждую из двух комбинаций.

Случай 1: комбинация 2, 3, 5.

Среди оставшихся цифр 6, 7, 7 — две нечетные и одна четная. Чтобы получить вторую цифру нечетную, нужно взять две чётных цифры или две нечётных цифры (к четной сумме будет добавляться 1 от суммы цифр в 1 разряде). Тогда получаем: 2 + 73 + 675 = 750. Заметим, что последовательность последних цифр в числах никак не влияет на результат.

Случай 2: комбинация 6, 7, 7.

Среди оставшихся цифр 2, 3, 5 — две нечетные и одна четная. Чтобы получить вторую цифру нечетную, нужно взять одну четную (2) и одну нечетную цифры (3 или 5) во втором разряде (к нечетной сумме будет добавляться 2 от суммы цифр в 1 разряде). Тогда получаем: 6 + 27 + 537 = 570 и 6 + 27 + 357 = 390.

Ответ: 390, 570 или 750.

Число делится на 12 тогда и только тогда, когда оно делится на 3 и на 4. Из признака делимости на 4 (число делится на 4, если две его последние цифры — нули или образуют число, которое делится на 4) следует, что число чётное — вычеркнем последние две цифры. Теперь используем признак делимости на 3. Найдём сумму цифр в числе 7 + 5 + 1 + 5 + 7 + 6 = 31. Ближайшие суммы цифр, которые делятся на 3 — 30, 27, 24.

Чтобы получить сумму цифр 30 вычеркнем из числа цифру 1. Получим число 75 576. Это число делится и на 4, и на 3.

Чтобы получить сумму цифр 24 вычеркнем из числа цифру 7. Цифра 7 встречается два раза в числе. Получаем числа 51 576 и 75 156. Эти числа делятся и на 4, и на 3.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *