Как доказать что верно равенство

Числовые равенства, свойства числовых равенств

После получения общих сведений о равенствах в математике переходим к более узким темам. Материал этой статьи даст представление о свойствах числовых равенств.

Что такое числовое равенство

Числовое равенство – это равенство, обе части которого состоят из чисел и/или числовых выражений.

Свойства числовых равенств

Сложно переоценить значимость свойств числовых равенств в математике: они являются опорой многому, определяют принцип работы с числовыми равенствами, методы решений, правила работы с формулами и многое другое.Очевидно, что существует необходимость детального изучения свойств числовых равенств.

Свойства числовых равенств абсолютно согласованы с тем, как определяются действия с числами, а также с определением равных чисел через разность: число a равно числу b только в тех случаях, когда разность a − b есть нуль. Далее в описании каждого свойства мы проследим эту связь.

Основные свойства числовых равенств

Изучать свойства числовых равенств начнем с трех базовых свойств, которые присущи всем равенствам. Перечислим основные свойства числовых равенств:

Прочие важные свойства числовых равенств

Основные свойства числовых равенств, рассмотренные выше, являются базисом для ряда дополнительных свойств, довольно ценных в разрезе практики. Перечислим их:

Укажем еще на пару свойств, которые позволяют осуществлять сложение и умножение соответствующих частей верных числовых равенств:

Необходимо уточнить, что почленно можно сложить не только два верных числовых равенства, но и три, и более;

Завершим данную статью, собрав для наглядности все рассмотренные свойства:

Источник

Понятие равенства, знак равенства, связанные определения

Материал статьи позволит ознакомиться с математической трактовкой понятия равенства. Порассуждаем на тему сути равенства; рассмотрим его виды и способы его записи; запишем свойства равенства и проиллюстрируем теорию примерами.

Что такое равенство

Само понятие равенства тесно переплетено с понятием сравнения, когда мы сопоставляем свойства и признаки, чтобы выявить схожие черты. Процесс сравнения требует наличия двух объектов, которые и сравниваются между собой. Данные рассуждения наводят на мысль, что понятие равенства не может иметь место, когда нет хотя бы двух объектов, чтобы было что сравнивать. При этом, конечно, может быть взято большее количество объектов: три и более, однако, в конечном, счете, мы так или иначе придем к сравнению пар, собранных из заданных объектов.

Смысл понятия «равенство» в обобщенном толковании отлично определяется словом «одинаковые». О двух одинаковых объектах можно говорить – «равные». Например, квадраты Как доказать что верно равенство. Смотреть фото Как доказать что верно равенство. Смотреть картинку Как доказать что верно равенство. Картинка про Как доказать что верно равенство. Фото Как доказать что верно равенствои Как доказать что верно равенство. Смотреть фото Как доказать что верно равенство. Смотреть картинку Как доказать что верно равенство. Картинка про Как доказать что верно равенство. Фото Как доказать что верно равенство. А вот объекты, которые хоть по какому-то признаку отличаются друг от другу, назовем неравными.

Говоря о равенстве, мы можем иметь в виду как объекты в целом, так и их отдельные свойства или признаки. Объекты являются равными в целом, когда одинаковы по всем характеристикам. Например, когда мы привели в пример равенство квадратов, имели в виду их равенство по всем присущим им свойствам: форме, размеру, цвету. Также объекты могут и не быть равными в целом, но обладать одинаковыми отдельными признаками. Например: Как доказать что верно равенство. Смотреть фото Как доказать что верно равенство. Смотреть картинку Как доказать что верно равенство. Картинка про Как доказать что верно равенство. Фото Как доказать что верно равенствои Как доказать что верно равенство. Смотреть фото Как доказать что верно равенство. Смотреть картинку Как доказать что верно равенство. Картинка про Как доказать что верно равенство. Фото Как доказать что верно равенство. Указанные объекты равны по форме (оба – круги), но различны (неравны) по цвету и размеру.

Таким образом, необходимо заранее понимать, равенство какого рода мы имеем в виду.

Запись равенств, знак равно

Равенство – запись, в которой использован знак равно, разделяющий два математических объекта (или числа, или выражения и т.п.).

Верные и неверные равенства

Составленные равенства могут соответствовать сути понятия равенства, а могут и противоречить ему. По этому признаку все равенства классифицируют на верные равенства и неверные равенства. Приведем примеры.

Свойства равенств

Запишем три основных свойства равенств:

Буквенно сформулированные свойства запишем так:

Отметим особенную пользу второго и третьего свойств равенств – свойств симметричности и транзитивности – они дают возможность утверждать равенство трех и более объектов через их попарное равенство.

Двойные, тройные и т.д. равенства

При помощи таких цепочек равенств оптимально составлять равенство трех и более объектов. Такие записи по своему смыслу являются обозначением равенства любых двух объектов, составляющих исходную цепочку равенств.

Составляя подобные цепочки, удобно записывать последовательность решения примеров и задач: такое решение становится наглядным и отражает все промежуточные этапы вычислений.

Источник

Верное равенство

Числовые равенства, свойства числовых равенств

Как доказать что верно равенство. Смотреть фото Как доказать что верно равенство. Смотреть картинку Как доказать что верно равенство. Картинка про Как доказать что верно равенство. Фото Как доказать что верно равенство

После получения общих сведений о равенствах в математике переходим к более узким темам. Материал этой статьи даст представление о свойствах числовых равенств.

Первый раз мы сталкиваемся с числовыми равенствами еще в начальной школе, когда происходит знакомство с числами и понятием «столько же». Т.е. самые примитивные числовые равенства это: 2=2, 5=5 и т.д.

И на том уровне изучения мы называли их просто равенствами, без уточнения «числовые», и закладывали в них количественный или порядковый смысл (который несут натуральные числа).

Например, равенство 2=2 будет соответствовать изображению, на котором – два цветка и на каждом сидит по две шмеля. Или, к примеру, две очереди, где вторыми по порядку стоят Вася и Ваня.

По мере появления знаний об арифметических действиях числовые равенства становятся сложнее: 5+7=12; 6-1=5; 2·1=2; 21:7=3 и т.п.

Затем начинают встречаться равенства, в записи которых участвуют числовые выражения разного рода. Например, (2+2)+5=2+(5+2); 4·(4−(1+2))+12:4−1=4·1+3−1 и т.п.

Дальше мы знакомимся с прочими видами чисел, и числовые равенства приобретают все более и более интересный и разнообразный вид.

Числовое равенство – это равенство, обе части которого состоят из чисел и/или числовых выражений.

Свойства числовых равенств

Сложно переоценить значимость свойств числовых равенств в математике: они являются опорой многому, определяют принцип работы с числовыми равенствами, методы решений, правила работы с формулами и многое другое.Очевидно, что существует необходимость детального изучения свойств числовых равенств.

Свойства числовых равенств абсолютно согласованы с тем, как определяются действия с числами, а также с определением равных чисел через разность: число a равно числу b только в тех случаях, когда разность a−b есть нуль. Далее в описании каждого свойства мы проследим эту связь.

Основные свойства числовых равенств

Изучать свойства числовых равенств начнем с трех базовых свойств, которые присущи всем равенствам. Перечислим основные свойства числовых равенств:

Свойство рефлексивности обозначает факт равенства числа самому себе: к примеру, 6=6, −3=−3, 437=437 и т.п.

Нетрудно продемонстрировать справедливость равенства a−a=0 для любого числа a: разность a−a можно записать как сумму a+(−a), а свойство сложения чисел дает нам возможность утверждать, что любому числу a соответствует единственное противоположное число −a, и сумма их есть нуль.

Согласно свойству симметричности числовых равенств: если число a равно числу b,
то число b равно числу a. К примеру, 43=64, тогда 64=43.

Обосновать данное свойство можно через разность чисел. Условию a=b соответствует равенство a−b=0. Докажем, что b−a=0.

Свойство транзитивности числовых равенств гласит, что два числа равны друг другу в случае их одновременного равенства третьему числу. К примеру, если 81=9 и 9=32, то 81=32.

Свойству транзитивности также отвечает определение равных чисел через разность и свойства действий с числами. Равенствам a=b и b=c соответствуют равенства a−b=0 и b−c=0.

Докажем справедливость равенства a−c=0, из чего последует равенство чисел a и c. Посколькусложение числа с нулем не меняет само число, то a−c запишем в виде a+0−c.

Вместо нуля подставим сумму противоположных чисел −b и b, тогда крайнее выражение станет таким: a+(−b+b)−c. Выполним группировку слагаемых: (a−b)+(b−c). Разности в скобках равны нулю, тогда и сумма (a−b)+(b−c) есть нуль.

Это доказывает, что, когда a−b=0 и b−c=0, верно равенство a−c=0, откуда a=c.

Прочие важные свойства числовых равенств

Основные свойства числовых равенств, рассмотренные выше, являются базисом для ряда дополнительных свойств, довольно ценных в разрезе практики. Перечислим их:

Прибавив к (или убавив от) обеим частям числового равенства, являющегося верным, одно и то же число, получим верное числовое равенство. Запишем буквенно: если a=b, где a и b – некоторые числа, то a+c=b+c при любом c.

В качестве обоснования запишем разность (a+c)−(b+c).
Это выражение легко преобразуется в вид (a−b)+(c−c).
Из a=b по условию следует, что a−b=0 и c−c=0, тогда (a−b)+(c−c)=0+0=0. Это доказывает, что (a+c)−(b+c)=0, следовательно, a+c=b+c;

Если обе части верного числового равенства перемножить с любым числом или разделить на число, не равное нулю, тогда получим верное числовое равенство.
Запишем буквенно: когда a=b, то a·c=b·c при любом числе c. Если c≠0, тогда и a:c=b:c.

Равенство верно: a·c−b·c=(a−b)·c=0·c=0, и из него следует равенство произведений a·c и b·c. А деление на отличное от нуля число c возможно записать как умножение на обратное число 1c;

При a и b, отличных от нуля и равных между собой, обратные им числа также равны.
Запишем: когда a≠0, b≠0 и a=b, то 1a=1b. Крайнее равенство нетрудно доказать: с этой целью разделим обе части равенства a=b на число, равное произведению a·b и не равное нулю.

Укажем еще на пару свойств, которые позволяют осуществлять сложение и умножение соответствующих частей верных числовых равенств:

При почленном сложении верных числовых равенств получается верное равенство. Запись этого свойства такова: если a=b и c=d, то a+c=b+d для любых чисел a, b, c и d.

Обосновать это полезное свойство возможно, опираясь на указанные ранее свойства. Мы знаем, что к обеим частям верного равенства возможно прибавить любое число.

К равенству a=b прибавим число c, а к равенству c=d – число b, итогом станут верные числовые равенства: a+c=b+c и c+b=d+b. Крайнее запишем в виде: b+c=b+d.

Из равенств a+c=b+c и b+c=b+d согласно свойству транзитивности следует равенство a+c=b+d. Что и нужно было доказать.

Необходимо уточнить, что почленно можно сложить не только два верных числовых равенства, но и три, и более;

Наконец, опишем такое свойство: почленное перемножение двух верных числовых равенств дает верное равенство. Запишем при помощи букв: если a=b и c=d, то a·c=b·d.

Доказательство этого свойства подобно доказательству предыдущего.

Умножим обе части равенства на любое число, умножим a=b на c, а c=d на b, получим верные числовые равенства a·c=b·c и c·b=d·b. Крайнее запишем как b·c=b·d.

Свойство транзитивности дает возможность из равенства a·c=b·c и b·c=b·d вывести равенство a·c=b·d, которое нам необходимо было доказать.

И вновь уточним, что данное свойство применимо для двух, трех и более числовых равенств.
Так, можно записать: если a=b, то an=bn для любых чисел a и b, и любого натурального числа n.

Завершим данную статью, собрав для наглядности все рассмотренные свойства:

Если a=bи с≠0, то a:c=b:c.

Если a=b, a=b, a≠0 и b≠0, то 1a=1b.

Если a=b и c=d, то a·c=b·d.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Что такое равенство? Первый признак и принципы равенства

Как доказать что верно равенство. Смотреть фото Как доказать что верно равенство. Смотреть картинку Как доказать что верно равенство. Картинка про Как доказать что верно равенство. Фото Как доказать что верно равенство

«Равенство» – это тема, которую ученики проходят еще в начальной школе. Сопутствует ей также ей «Неравенства». Эти два понятия тесно взаимосвязаны. Кроме того, с ними связывают такие термины, как уравнения, тождества. Итак, что такое равенство?

Понятие равенства

Кроме понятия равенства, в школе изучают также тему «Числовое равенство». Под этим высказыванием понимают два числовых выражения, которые стоят по обе стороны от знака =. К примеру, 2*5+7=17. Обе части записи равны между собой.

В числовых выражениях подобного типа могут использоваться скобки, влияющие на порядок действий. Итак, существует 4 правила, которые следует учесть при вычислении результатов числовых выражений.

Итак, теперь понятно, что такое равенство. В дальнейшем будут рассмотрены понятия уравнения, тождества и способы их вычисления.

Понятие пропорции

В математике существует такое понятие, как равенство отношений. В этом случае подразумевается определение пропорции. Если разделить А на В, то результатом будет отношение числа А к числу В. Пропорцией называют равенство двух отношений:

Иногда пропорция записывается следующим образом: A : B = C : D. Отсюда вытекает основное свойство пропорции: A * D = D * C, где A и D – крайние члены пропорции, а В и С – средние.

Тождества

Тождеством называют равенство, которое будет верно при всех допустимых значениях тех переменных, которые входят в задание. Тождества могут быть представлены как буквенные или числовые равенства.

Тождественно равными называются выражения, содержащие в обеих частях равенства неизвестную переменную, которая способна приравнять две части одного целого.

Если проводить замены одного выражения другим, которое будет равно ему, тогда речь идет о тождественном преобразовании. В этом случае можно воспользоваться формулами сокращенного умножения, законами арифметики и прочими тождествами.

Чтобы сократить дробь, нужно провести тождественные преобразования. К примеру, дана дробь. Чтобы получить результат, следует воспользоваться формулами сокращенного умножения, разложением на множители, упрощением выражений и сокращением дробей.

При этом стоит учесть, что данное выражение будет тождественным тогда, когда знаменатель не будет равен 3.

5 способов доказать тождество

Чтобы доказать равенство тождественное, нужно провести преобразование выражений.

I способ

Необходимо провести равносильные преобразования в левой части. В результате получается правая часть, и можно говорить о том, что тождество доказано.

II способ

Все действия по преобразованию выражения происходят в правой части. Итогом проделанных манипуляций является левая часть. Если обе части идентичны, то тождество доказано.

III способ

«Трансформации» происходят в обеих частях выражения. Если в результате получатся две идентичные части, тождество доказано.

IV способ

Из левой части вычитается правая. В результате равносильных преобразований должен получиться нуль. Тогда можно говорить о тождественности выражения.

V способ

Из правой части вычитается левая. Все равносильные преобразования сводятся к тому, чтобы в ответе стоял нуль. Только в таком случае можно говорить о тождественности равенства.

Основные свойства тождеств

В математике зачастую используют свойства равенств, чтобы ускорить процесс вычисления. Благодаря основным алгебраическим тождествам процесс вычисления некоторых выражений займет считанные минуты вместо долгих часов.

Формулы сокращенного умножения

По своей сути формулы сокращенного умножения являются равенствами. Они помогают решить множество задач в математике благодаря своей простоте и легкости в обращении.

Формулы сокращенного умножения зачастую применяются, если необходимо привести многочлен к привычному виду, упростив его всеми возможными способами. Представленные формулы доказываются просто: достаточно раскрыть скобки и привести подобные слагаемые.

Уравнения

После изучения вопроса, что такое равенство, можно приступать к следующему пункту: что такое уравнение. Под уравнением понимается равенство, в котором присутствуют неизвестные величины.

Решением уравнения называют нахождение всех значений переменной, при которых обе части всего выражения будут равны. Также встречаются задания, в которых нахождение решений уравнения невозможно.

В таком случае говорят, что корней нет.

Как правило, равенства с неизвестными в качестве решения выдают целые числа. Однако возможны случаи, когда корнем являются вектор, функция и другие объекты.

Уравнение является одним из важнейших понятий в математике. Большинство научных и практических задач не позволяют измерить или вычислить какую-либо величину. Поэтому необходимо составлять соотношение, которое удовлетворит все условия поставленной задачи. В процессе составления такого соотношения появляется уравнение или система уравнений.

Обычно решение равенства с неизвестным сводится к преобразованию сложного уравнения и сведению его к простым формам. Необходимо помнить, что преобразования нужно проводить относительно обеих частей, в противном случае на выходе получится неверный результат.

4 способа решить уравнение

Под решением уравнения понимают замену заданного равенства другим, которое равносильно первому. Подобная подмена известна как тождественное преобразование. Чтобы решить уравнение, необходимо воспользоваться одним из способов.

1. Одно выражение заменяется другим, которое в обязательном порядке будет тождественно первому. Пример: (3∙х+3)2=15∙х+10. Это выражение можно преобразовать в 9∙х2+18∙х+9=15∙х+10.

2. Перенесение членов равенства с неизвестным из одной стороны в другую. В таком случае необходимо правильно менять знаки. Малейшая ошибка сгубит всю проделанную работу. В качестве примера возьмем предыдущий «образец».

9∙х2 + 12∙х + 4 = 15∙х + 10

9∙х2 + 12∙х + 4 – 15∙х – 10 = 0

Дальше уравнение решается с помощью дискриминанта.

3. Перемножение обеих частей равенства на равное число или выражение, которые не равняются 0. Однако стоит напомнить, что если новое уравнение не будет равносильным равенству до преобразований, тогда количество корней может существенно измениться.

4. Возведение в квадрат обеих частей уравнения. Этот способ просто замечательный, особенно когда в равенстве есть иррациональные выражения, то есть квадратный корень и выражение под ним.

Тут есть один нюанс: если возвести уравнение в четную степень, тогда могут появиться посторонние корни, которые исказят суть задания. И если неправильно извлечь корень, тогда смысл вопроса в задаче будет неясен.

Пример: │7∙х│=35 → 1) 7∙х = 35 и 2) – 7∙х = 35 → уравнение будет решено верно.

Итак, в этой статье упоминаются такие термины, как то уравнения и тождества. Все они происходят от понятия «равенство». Благодаря различного рода равносильным выражениям решение некоторых задач в значительной мере облегчено.

Источник

Доказательство неравенств

Как доказать неравенство? Рассмотрим некоторые способы доказательства неравенств.

1) Число a больше числа b, если разность a-b — положительное число:

a>b, если a-b>0.

2) Число a меньше числа b, если разность a-b — отрицательное число:

a 0 или a=b (то есть a-b≥0).

4)a≤b, если a-b

Сводится к оценке разности левой и правой частей неравенства и сравнение её с нулём.

1) Доказать неравенство: (a+9)(a-2)

Оценим разность левой и правой частей неравенства:

Оцениваем разность левой и правой частей неравенства:

(3x-5)²≥0 при любом значении переменной x.

Следовательно, (3x-5)²+23>0 при любом x.

Значит, неравенство 9x²+48>30x выполняется при любом действительном значении x.

Что и требовалось доказать.

3) Доказать неравенство: x²+y²+16x-20y+190>0.

(x+8)²≥0 при любом значении x,

(y-10)²≥0 при любом значении y,

Следовательно, (x+8)²+(y-10)²+26>0 при любых действительных значениях переменных x и y.

А это значит, что x²+y²+16x-20y+190>0.

Что и требовалось доказать.

II. Доказательство неравенств методом «от противного».

Высказываем предположение, что доказываемое неравенство неверно, и приходим к противоречию.

Предположим, что неравенство, которое нам нужно доказать, неверно. Тогда

Раскрываем скобки и упрощаем:

Что и требовалось доказать.

III. Доказательство неравенств с помощью геометрической интерпретации.

Таким способом, например, можно доказать неравенство о среднем арифметическом и среднем геометрическом (частный случай неравенства Коши).

IV. Доказательство неравенств с использованием очевидных неравенств.

Доказать неравенство: a²+b²+c²≥ab+bc+ac.

Так при любых действительных значениях переменных (a-b)²≥0, (b-c)²≥0 и (a-c)²≥0, то очевидно, что (a-b)²+(b-c)²+(a-c)²≥0.

Раскрываем скобки по формуле квадрата разности и упрощаем:

Осталось перенести три слагаемые в правую часть:

Что и требовалось доказать.

V. Доказательство неравенств с помощью ранее доказанных неравенств.

Основные неравенства, на которые опираются при доказательстве других неравенств:

Как доказать что верно равенство. Смотреть фото Как доказать что верно равенство. Смотреть картинку Как доказать что верно равенство. Картинка про Как доказать что верно равенство. Фото Как доказать что верно равенство

При a1= a2= …= an неравенство превращается в равенство.

Как доказать что верно равенство. Смотреть фото Как доказать что верно равенство. Смотреть картинку Как доказать что верно равенство. Картинка про Как доказать что верно равенство. Фото Как доказать что верно равенство

Как доказать что верно равенство. Смотреть фото Как доказать что верно равенство. Смотреть картинку Как доказать что верно равенство. Картинка про Как доказать что верно равенство. Фото Как доказать что верно равенство

Применяется также аналог неравенства для отрицательных взаимно-обратных чисел:

при x Как доказать что верно равенство. Смотреть фото Как доказать что верно равенство. Смотреть картинку Как доказать что верно равенство. Картинка про Как доказать что верно равенство. Фото Как доказать что верно равенство

Равенство достигается лишь в случае, когда числа xi и yi пропорциональны, то есть существует число k такое, что для любого i=1,2,…,n выполняется равенство xi=kyi.

Как доказать что верно равенство. Смотреть фото Как доказать что верно равенство. Смотреть картинку Как доказать что верно равенство. Картинка про Как доказать что верно равенство. Фото Как доказать что верно равенство

где x>-1, n — натуральное число.

Равенство достигается лишь при x=0 и n=1.

Если x>-1, n — действительное число:

Как доказать что верно равенство. Смотреть фото Как доказать что верно равенство. Смотреть картинку Как доказать что верно равенство. Картинка про Как доказать что верно равенство. Фото Как доказать что верно равенство

В обоих случаях равенство возможно лишь при x=0.

Как доказать что верно равенство. Смотреть фото Как доказать что верно равенство. Смотреть картинку Как доказать что верно равенство. Картинка про Как доказать что верно равенство. Фото Как доказать что верно равенство

Равенство достигается, если a и b имеют одинаковые знаки (a≥0 и b≤0 либо a≤0, b≤0).

Как доказать что верно равенство. Смотреть фото Как доказать что верно равенство. Смотреть картинку Как доказать что верно равенство. Картинка про Как доказать что верно равенство. Фото Как доказать что верно равенство

1) Доказать неравенство при x>0, a>0, b>0, c>0:

Как доказать что верно равенство. Смотреть фото Как доказать что верно равенство. Смотреть картинку Как доказать что верно равенство. Картинка про Как доказать что верно равенство. Фото Как доказать что верно равенство

Используем неравенство Коши о среднем арифметическом и среднем геометрическом

Как доказать что верно равенство. Смотреть фото Как доказать что верно равенство. Смотреть картинку Как доказать что верно равенство. Картинка про Как доказать что верно равенство. Фото Как доказать что верно равенство

для каждого из множителей:

Как доказать что верно равенство. Смотреть фото Как доказать что верно равенство. Смотреть картинку Как доказать что верно равенство. Картинка про Как доказать что верно равенство. Фото Как доказать что верно равенство

Как доказать что верно равенство. Смотреть фото Как доказать что верно равенство. Смотреть картинку Как доказать что верно равенство. Картинка про Как доказать что верно равенство. Фото Как доказать что верно равенство

Так как по условию x>0, a>0, b>0, c>0, то x+a>0, x+b>0, x+c>0 и

Как доказать что верно равенство. Смотреть фото Как доказать что верно равенство. Смотреть картинку Как доказать что верно равенство. Картинка про Как доказать что верно равенство. Фото Как доказать что верно равенство0,2\sqrt > 0,2\sqrt > 0. \]» title=»Rendered by QuickLaTeX.com»/>

Как доказать что верно равенство. Смотреть фото Как доказать что верно равенство. Смотреть картинку Как доказать что верно равенство. Картинка про Как доказать что верно равенство. Фото Как доказать что верно равенство

Как доказать что верно равенство. Смотреть фото Как доказать что верно равенство. Смотреть картинку Как доказать что верно равенство. Картинка про Как доказать что верно равенство. Фото Как доказать что верно равенство

Что и требовалось доказать.

2) Доказать неравенство:

Как доказать что верно равенство. Смотреть фото Как доказать что верно равенство. Смотреть картинку Как доказать что верно равенство. Картинка про Как доказать что верно равенство. Фото Как доказать что верно равенство

Как доказать что верно равенство. Смотреть фото Как доказать что верно равенство. Смотреть картинку Как доказать что верно равенство. Картинка про Как доказать что верно равенство. Фото Как доказать что верно равенство

Как доказать что верно равенство. Смотреть фото Как доказать что верно равенство. Смотреть картинку Как доказать что верно равенство. Картинка про Как доказать что верно равенство. Фото Как доказать что верно равенство

Таким образом, для доказательства нашего неравенства надо показать, что

Как доказать что верно равенство. Смотреть фото Как доказать что верно равенство. Смотреть картинку Как доказать что верно равенство. Картинка про Как доказать что верно равенство. Фото Как доказать что верно равенство

разделим обе части неравенства на 4 в двадцатой степени (при делении на положительное число знак неравенства не изменяется):

Как доказать что верно равенство. Смотреть фото Как доказать что верно равенство. Смотреть картинку Как доказать что верно равенство. Картинка про Как доказать что верно равенство. Фото Как доказать что верно равенство

Как доказать что верно равенство. Смотреть фото Как доказать что верно равенство. Смотреть картинку Как доказать что верно равенство. Картинка про Как доказать что верно равенство. Фото Как доказать что верно равенство

Применим неравенство Бернулли:

Как доказать что верно равенство. Смотреть фото Как доказать что верно равенство. Смотреть картинку Как доказать что верно равенство. Картинка про Как доказать что верно равенство. Фото Как доказать что верно равенство

Как доказать что верно равенство. Смотреть фото Как доказать что верно равенство. Смотреть картинку Как доказать что верно равенство. Картинка про Как доказать что верно равенство. Фото Как доказать что верно равенство

Так как в неравенстве

Как доказать что верно равенство. Смотреть фото Как доказать что верно равенство. Смотреть картинку Как доказать что верно равенство. Картинка про Как доказать что верно равенство. Фото Как доказать что верно равенство

правая часть больше либо равна 6, это равенство верно. Следовательно,

Как доказать что верно равенство. Смотреть фото Как доказать что верно равенство. Смотреть картинку Как доказать что верно равенство. Картинка про Как доказать что верно равенство. Фото Как доказать что верно равенство

Что и требовалось доказать.

Помимо перечисленных, существуют другие способы доказательства неравенств (метод математической индукции и т.д.).

Умение доказывать неравенства применяется во многих разделах алгебры (например, метод оценки решения уравнений сводится к доказательству неравенств).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *