Как понять на что делится число
Признаки делимости чисел
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).
Что такое «признак делимости»
Признак делимости числа — это такая особенность числа, которая еще до выполнения деления позволяет определить, кратно ли число делителю.
Истинный путь джедая, чтобы зря не пыхтеть над числами, которые в конечном итоге не делятся.
Однозначные, двузначные и трехзначные числа
Однозначное число — это такое число, в составе которого один знак (одна цифра). Девять однозначных натуральных чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9.
Двузначные числа — такие, в составе которых два знака (две цифры). Цифры могут повторяться или быть различными.
Трехзначные числа — числа, в составе которых три знака (три цифры).
Чётные и нечётные числа
Число называют четным тогда, когда оно делится на два без остатка. А нечетные числа — те, что на два без остатка не делятся. Все просто!
Признаки делимости чисел
Признак делимости на 2. Сразу можно сказать, что число делится на 2, если последняя цифра четная.
Признак делимости на 3. Сумма цифр числа должна делиться на 3.
Признаки делимости на 4. Число делится на 4, если две последние цифры — 0 или если они образуют цифру, которая делится на 4.
Признаки делимости на 5. Число делится на 5, если заканчивается на 0 или 5.
Признак делимости на 6. На 6 делятся те числа, которые могут одновременно делится на 2 и на 3.
Признаки делимости на 8. Число делится на 8, если три последних цифры — 0 или если они образуют число, которое делится на 8.
Признак делимости на 9. Число делится на 9, если сумма цифр делится на 9.
Признаки делимости на 10, 100. Числа, которые заканчиваются на 0, 00, 000 делятся на 10, 100, 1000 и так далее.
Признаки делимости
Признаки делимости чисел — это особенности чисел, позволяющие определить, не выполняя деления, кратно число делителю или нет.
Чётные и нечётные числа
Чётные числа — это числа которые делятся на 2. Нечётные числа — это числа, которые на два не делятся.
Число нуль относится к чётным числам.
Признаки делимости чисел
Признак делимости на 2. Число делится на 2, если его последняя цифра чётная. Например, число 4376 делится на 2, так как последняя цифра (6) — чётная.
Признак делимости на 3. На 3 делятся только те числа, у которых сумма цифр делится на 3. Например, число 10815 делится на 3, так как сумма его цифр 1 + 0 + 8 + 1 + 5 = 15 делится на 3.
Признаки делимости на 4. Число делится на 4, если две последние его цифры нули или образуют число, которое делится на 4. Например, число 244500 делится на 4, так как оно оканчивается двумя нулями. Числа 14708 и 7524 делятся на 4, так как две последние цифры этих чисел (08 и 24) делятся на 4.
Признаки делимости на 5. На 5 делятся те числа, которые оканчиваются на 0 или 5. Например, число 320 делится на 5, так как последняя цифра 0.
Признак делимости на 6. Число делится на 6, если оно делится одновременно на 2 и на 3. Например, число 912 делится на 6, так как оно делится и на 2 и на 3.
Признаки делимости на 8. На 8 делятся те числа, у которых три последние цифры являются нулями или образуют число, которое делится на 8. Например, число 27000 делится на 8, так как оно оканчивается тремя нулями. Число 63128 делится на 8, так как три последние цифры образуют число (128), которое делится на 8.
Признак делимости на 9. На 9 делятся только те числа, у которых сумма цифр делится на 9. Например, число 2637 делится на 9, так как сумма его цифр 2 + 6 + 3 + 7 = 18 делится на 9.
Признаки делимости на 10, 100, 1000 и т. д. На 10, 100, 1000 и так далее делятся те числа, которые оканчиваются соответственно одним нулём, двумя нулями, тремя нулями и так далее. Например, число 3800 делится на 10 и на 100.
Делимость чисел. Признаки делимости. Основная теорема арифметики
В этой статье – необходимая теория для решения задачи 18 Профильного ЕГЭ по математике. Но это не все. Знания о числах и их свойствах, признаки делимости и формула деления с остатком могут пригодиться вам при решении многих задач ЕГЭ.
Повторим еще раз, какие бывают числа.
Например, при делении 9 на 4 мы получаем частное 2 и остаток 1, то есть 9 = 4∙2 + 1.
Простые числа – те, что делятся только на себя и на единицу. Единица не является ни простым, ни составным числом. Простые числа: 2, 3, 5, 7, 11, 13, 17, 19…
Числа называются взаимно простыми, если они не имеют общих делителей, кроме 1.
Любое натуральное число можно разложить на простые множители.
Например, 72 = 2∙2∙2∙3∙3, а 98 = 2∙7∙7.
Основная теорема арифметики: Любое натуральное число можно представить в виде произведения простых делителей, взятых в натуральных степенях, причем это разложение единственно.
Наименьшее общее кратное двух чисел (НОК) — это наименьшее число, которое делится на оба данных числа.
Наибольший общий делитель двух чисел (НОД) — это наибольшее число, на которое делятся два данных числа.
последняя цифра числа четная;
сумма цифр числа делится на 3;
число заканчивается на 0 или на 5;
сумма цифр числа делится на 9;
последняя цифра числа равна 0;
суммы цифр на четных и нечетных позициях числа равны или их разность кратна 11.
Признаки делимости чисел
В данной публикации мы рассмотрим признаки делимости на числа от 2 до 11, сопроводив их примерами для лучшего понимания.
Признак делимости – это алгоритм, используя который можно сравнительно быстро определить, является ли рассматриваемое число кратным заранее заданному (т.е. делится ли на него без остатка).
Признак делимости на 2
Число делится на 2 тогда и только тогда, когда его последняя цифра является четной, т.е. также делится на два.
Примеры:
Признак делимости на 3
Число делится на 3 тогда и только тогда, когда сумма всех его цифр, также, делится на три.
Примеры:
Признак делимости на 4
Двузначное число
Число делится на 4 тогда и только тогда, когда сумма удвоенной цифры в разряде его десятков и цифры в разряде единиц, также, делится на четыре.
Число разрядов больше 2
Число кратно 4, когда две его последние цифры образуют число, делящееся на четыре.
Примечание:
Число делится на 4 без остатка, если:
Признак делимости на 5
Число делится на 5 тогда и только тогда, когда его последняя цифра – это 0 или 5.
Примеры:
Признак делимости на 6
Число делится на 6 тогда и только тогда, когда он одновременно кратно и двум, и трем (см. признаки выше).
Примеры:
Признак делимости на 7
Число делится на 7 тогда и только тогда, когда сумма утроенного числа его десятков и цифры в разряде единиц, также, делится на семь.
Признак делимости на 8
Трехзначное число
Число делится на 8 тогда и только тогда, когда сумма цифры в разряде единиц, удвоенной цифры в разряде десятков и учетверенной в разряде сотен делится на восемь.
Число разрядов больше 3
Число делится на 8, когда три последние цифры образуют число, делящееся на 8.
Признак делимости на 9
Число делится на 9 тогда и только тогда, когда сумма всех его цифр, также, делится на девять.
Примеры:
Признак делимости на 10
Число делится на 10 тогда и только тогда, когда оно оканчивается на ноль.
Примеры:
Признак делимости на 11
Число делится на 11 тогда и только тогда, когда модуль разности сумм четных и нечетных разрядов равен нулю или делится на одиннадцать.
Примеры:
Признаки делимости
Всего получено оценок: 192.
Всего получено оценок: 192.
Признаки делимости чисел сложно применять, поскольку их достаточно много. Зато знание таких признаков существенно экономит время, поскольку позволяет без деления узнать, делиться одно число на другое или нет. Разберемся в теме подробнее.
Что такое делимость?
Признаки делимости позволяют просто и быстро определить, возможно ли полностью поделить одно число на другое. А делимость это и есть возможность поделить одно число на друге без остатка.
Признаки делимости
Признаки делимости удобнее изучать, разбив возможные делители на группы. Поступим так же и рассмотрим делимость на каждую из групп в отдельности.
На 2,4,8
Эти числа в рассматриваемом вопросе сгруппированы, так как их признаки очень похожи друг на друга.
На 3 и 9
Число делится на 3, если сумма цифр этого числа делится на 3. Рассмотрим число: 804. Оно делится на 3, поскольку сумма цифр 8+0+4=12 – делится на 3.
Число делится на 9, если сумма цифр числа делится на 9. Признак похож на признак делимости на число 3.
Интересно: Если число делится на 9, то оно делится и на 3. При этом, число, которое делится на 3 не всегда делится на 9.
Число делится на 5, если последняя цифра числа равняется 5 или нулю. Это наиболее известный признак делимости, наряду с делимостью на 2.
Чтобы число делилось на 6, оно должно делиться на 2 и 3, так как 2*3=6. Поэтому признак делимости на 6 это объединение признаков деления на 2 и на 3.
То есть: число делится на 6, если оно четное и сумма всех его цифр делится на 3
Самые сложные в восприятии признаки делимости на 7 и на 11. Число делится на 7, если разность сумм четных цифр числа и нечетных цифр чисел делится на 7.
Приведем пример: число 469 делится на 7. Почему? Сумма цифр на нечетных позициях 4+9=13. Сумма чисел на четных позициях 6. Разность получившихся сумм: 13-6=7, а это число делится на 7. Поэтому все число 469 делится на 7
На 10
Число делится на 10 только если последней цифрой числа является 0
По тому же принципу определяют делимость числа на 100, 1000 и так далее. Если у числа два нуля на конце, то оно делится на 100, если три нуля на конце, число делится на 1000 и так далее.
На 11
Число делится на 11 только, если разность сумм четных и нечетных цифр числа делится на 11 или равняется нулю Приведем пример:
Число 2035 делится на 11. Сумма цифр, стоящих на четных позициях: 2+3=5. Сумма нечетных цифр: 0+5=5. Разность полученных выражений:5-5=0, значит число делится на 11.
Нельзя путать понятия четной позиции и четного числа. Цифра это знак, который используется для записи чисел. Число это набор цифр, каждая из которых стоит на своей позиции. В числе 127 всего три цифры. Цифра 1 стоит на первой позиции, цифра 2 на второй и так далее. На четной позиции находится цифра 2. На нечетных позициях цифры 1 и 7.
Чтобы быстрее запомнить все группы можно свести в таблицу признаков делимости чисел.
Признаки
Запомни
Признак делимости на 2
Число делится на 2, если его последняя цифра делится на 2 или является нулём.
Признак делимости на 4
Число делится на 4, если две его последние цифры нули или образуют число, делящееся на 4.
Признак делимости на 8
Число делится на 8, если три последние его цифры нули или образуют число, делящееся на 8.
Признак делимости на 3
Число делится на 3, если сумма всех его цифр делится на 3.
Признак делимости на 6
Число делится на 6, если оно делится одновременно на 2 и на 3.
Признак делимости на 9
Число делится на 9, если сумма всех его цифр делится на 9.
Признак делимости на 5
Число делится на 5, если его последняя цифра 5 или 0.
Признак делимости на 25
Число делится на 25, если его две последние цифры нули или образуют число, которое делится на 25.
Признак делимости на 10,100 и 1000.
10 делятся нацело только те числа, последняя цифра которых нуль.
На 100 делятся нацело только те числа, две последние цифры которых нули.
На 1000 делятся нацело только те числа, три последние цифры нули.
Признак делимости на 11
Число делится на 11, если сумма цифр, которые стоят на четных местах равна сумме цифр, стоящих на нечетных местах, либо отличается от неё на 11.
Что мы узнали?
Мы поговорили о признаках делимости. Расписали все существующие признаки по группам. В особо сложных ситуациях привели примеры.