Модуль юнга алюминия равен 70 гпа это означает что
Модуль упругости алюминия
Модуль упругости = Модуль Юнга
На рисунке можно видеть, что на начальном этапе кривой напряжение-деформация увеличение деформации на единицу увеличения напряжения у алюминия и алюминиевых сплавов происходит намного быстрее, чем у стали – в три раза. Наклон этой части кривой определяет характеристику материала – модуль упругости (модуль Юнга). Поскольку единица измерения деформации – безразмерная величина, то размерность модуля Юнга совпадает с размерностью напряжения.
Модуль Юнга алюминия составляет примерно одну треть от модуля Юнга стали и для большинства алюминиевых сплавов находится между 65500 и 72400 МПа.
См. Модуль упругости различных алюминиевых сплавов
Ясно, что если стальную балку заменить на идентичную по форме балку из алюминиевого сплава, то вес ее будет в три раза меньше, но и ее упругий прогиб под той же нагрузкой будет приблизительно в три раза больше. Можно отметить, что при этом алюминиевая балка тех же размеров, что и стальная балка поглощает в три раза больше энергии, но только до тех пор, пока напряжения в алюминиевом сплаве остаются ниже предела упругости.
В таблице ниже представлены величины модулей упругости алюминия и различных металлов.
Жесткость алюминиевых профилей
Стоит отметить, что жесткость конструкционного элемента определяется как произведение модуля упругости материала и момента инерции сечения элемента (E × I) и именно от жесткости зависит прогиб элемента под воздействием изгибающей нагрузки. Это дает алюминию шанс в соревновании со сталью: прессованные алюминиевые профили могут иметь намного более сложные поперечные сечения и тем самым компенсировать малость модуля упругости алюминия увеличением момента инерции их поперечных сечений.
Кроме жесткости на изгиб необходимо учитывать и другие факторы, например, жесткость на кручение. В результате всего этого сложность поперечного сечения профиля возрастает и часто «съедает» часть ожидаемого выигрыша в весе, который обычно составляет около 50 % вместо возможных 33 %.
Модуль Юнга (упругости)
Все твердые тела, как кристаллические, так и аморфные, имеют свойство изменять свою форму под воздействие приложенной к ним силы. Другими словами, они подвергаются деформации. Если тело возвращается к исходным размерам и форме после того, как внешнее усилие прекращает свое воздействие, то его называют упругим, а его деформацию считают упругой. Для любого тела существует предел приложенного усилия, после которого деформация перестает быть упругой, тело не возвращается в исходную форму и к исходным размерам, а остается в деформированном состоянии или разрушается. Теория упругих деформаций тел была создана в конце 17 века британским ученым Р. Гуком и развита в трудах его соотечественника Томаса Юнга. В их честь Гука и Юнга были названы соответственно закон и коэффициент, определяющий степень упругости тел. Он активно применяется в инженерном деле в ходе расчетов прочности конструкций и изделий.
Основные сведения
Модуль Юнга, (называемый также модулем продольной упругости и модулем упругости первого рода) это важная механическая характеристика вещества. Он является мерой сопротивляемости продольным деформациям и определяет степень жесткости. Он обозначается как E; измеряется н/м 2 или в Па.
Это важный коэффициент применяют при расчетах жесткости заготовок, узлов и конструкций, в определении их устойчивости к продольным деформациям. Вещества, применяемые для изготовления промышленных и строительных конструкций, имеют, как правило, весьма большие значения E. И поэтому на практике значения Е для них приводят в гигаПаскалях (10 12 Па)
Величину E для стержней поддается расчету, у более сложных конструкций она измеряется в ходе опытов.
Приближенные величины E возможно узнать из графика, построенного в ходе тестов на растяжение.
График теста на растяжение
E- это частное от деления нормальных напряжений σ на относительное удлинение ε.
Закон Гука также можно сформулировать и с использованием модуля Юнга.
Физический смысл модуля Юнга
Во время принудительного изменения формы предметов внутри них порождаются силы, сопротивляющиеся такому изменению, и стремящиеся к восстановлению исходной формы и размеров упругих тел.
Если же тело не оказывает сопротивления изменению формы и по окончании воздействия остается в деформированном виде, то такое тело называют абсолютно неупругим, или пластичным. Характерным примером пластичного тела является брусок пластилина.
Р. Гук исследовал удлинение стрежней из различных веществ, под воздействием подвешенных к свободному концу гирь. Количественным выражением степени изменения формы считают относительное удлинение, равное отношению абсолютного удлинения и исходной длины.
В результате серии опытов было установлено, что абсолютное удлинение пропорционально с коэффициентом упругости исходной длине стрежня и деформирующей силе F и обратно пропорционально площади сечения этого стержня S:
Величину, обратную α, и называют модулем Юнга:
Отношение растягивающей силы F к S называют упругим напряжением σ:
Закон Гука, записанный с использованием модуля Юнга, выглядит так:
Теперь можно сформулировать физический смысл модуля Юнга: он соответствует напряжению, вызываемому растягиванием стержнеобразного образца вдвое, при условии сохранения целостности.
В реальности подавляющее большинство образцов разрушаются до того, как растянутся вдвое от первоначальной длины. Значение E вычисляют с помощью косвенного метода на малых деформациях.
Коэффициент жёсткости при упругой деформации стержня вдоль его оси k = (ES) / l
Модуль Юнга определяет величину потенциальной энергии тел или сред, подвергшихся упругой деформации.
Значения модуля юнга для некоторых материалов
В таблице показаны значения E ряда распространенных веществ.
Материал | модуль Юнга E, ГПа |
Алюминий | 70 |
Бронза | 75-125 |
Вольфрам | 350 |
Графен | 1000 |
Латунь | 95 |
Лёд | 3 |
Медь | 110 |
Свинец | 18 |
Серебро | 80 |
Серый чугун | 110 |
Сталь | 200/210 |
Стекло | 70 |
Модуль продольной упругости стали вдвое больше модуля Юнга меди или чугуна. Модуль Юнга широко применяется в формулах прочностных расчетов элементов конструкций и изделий в целом.
Предел прочности материала
Это предел возникающего напряжения, после которого образец начинает разрушаться.
Статический предел прочности измеряется при продолжительном приложении деформирующего усилия, динамический — при кратковременном, ударном характере такого усилия. Для большинства веществ динамический предел больше, чем статический.
Инструмент для определения предела прочности
Допускаемое механическое напряжение в некоторых материалах при растяжении
Из жизненного опыта известно, что разные материалы по-разному сопротивляются изменению формы. Прочностные характеристики кристаллических и других твердых тел определяются силами межатомного взаимодействия. По мере роста межатомных расстояний возрастают и силы, притягивающие атомы друг к другу. Эти силы достигают максимума при определенной величине напряжения, равной приблизительно одной десятой от модуля Юнга.
Испытание на растяжение
Эту величину называют теоретической прочностью, при ее превышении начинается разрушение материала. В реальности разрушение начинается при меньших значениях, поскольку строение реальных образцов неоднородно. Это вызывает неравномерное распределение напряжений, и разрушение начинается с тех участков, где напряжения максимальны.
Материалы | σраст | |
Бор | 5700 | 0,083 |
Графит | 2390 | 0,023 |
Сапфир | 1495 | 0,030 |
Стальная проволока | 415 | 0,01 |
Стекловолокно | 350 | 0,034 |
Конструкционная сталь | 60 | 0,003 |
Нейлон | 48 | 0,0025 |
Эти цифры учитываются конструкторами при выборе материала деталей будущего изделия. С их использованием также проводятся прочностные расчеты. Так, например, тросы, используемые для подъемно- транспортных работ, должны иметь десятикратный запас по прочности. Периодически их проверяют, подвешивая груз в десять раз больше, чем паспортная грузоподъемность троса.
Запасы прочности, закладываемые в ответственные конструкции, также многократны.
Коэффициент запаса прочности
Для количественного выражения запаса прочности при конструировании применяют коэффициент запаса прочности. Он характеризует способность изделия к перегрузкам выше номинальных. Для бытовых изделий он невелик, но для ответственных узлов и деталей, могущих при разрушении представлять опасность для жизни и здоровья человека, его делают многократным.
Точный расчет прочностных характеристик позволяет создать достаточный для безопасности запас прочности и одновременно не перетяжелить конструкцию, ухудшая ее эксплуатационные характеристики. Для таких расчетов используются сложные математические методы и совершенное программное обеспечение. Наиболее важные конструкции обсчитывают на суперкомпьютерах.
Связь с другими модулями упругости
Модуль Юнга связан с модулем сдвига, определяющим способность образца к сопротивлению против деформации сдвига, следующим соотношением:
E связан также и с модулем объёмной упругости, определяющим способность образца к сопротивлению против одновременного сжатия со всех сторон.
Модуль Юнга
Модуль Юнга (модуль упругости) — это физическая величина, которая характеризует свойства какого-либо материала сгибаться или растягиваться под воздействием силы; по сути именно от этого зависит жёсткость тела.
Это свойство любого материала, и оно зависит от температуры и оказываемого давления.
В физике упругость — это свойство твёрдых материалов возвращаться в свою первоначальную форму и размер после устранения сил, которые применялись при деформации.
Другими словами: когда тело деформируется, то появляется сила, которая стремится восстановить первоначальную форму и размер тела. Сила упругости является этой проявляющейся силой. Также она представляет собой следствие электромагнитного взаимодействия между частицами.
Низкое значение модуля Юнга означает, что изучаемое твёрдое тело является эластичным.
Высокое значение модуля Юнга означает, что изучаемое твёрдое тело является неэластичным или жёстким.
Примеры значений модуля Юнга (упругости) для:
Таблица
Большинство материалов имеют значение E очень высокого порядка, поэтому они записываются при помощи «гигапаскалей» ([ГПа]; ).
Материал | Модуль Юнга E, [ГПа] |
---|---|
Алмаз | 1220 |
Алюминий | 69 |
Дерево | 10 |
Кадмий | 50 |
Латунь | 97 |
Медь | 110 |
Никель | 207 |
Резина | 0,9 (≈ 1 МПа, мегапаскаль) |
Сталь | 200 |
Титан | 107 |
Единица измерения и формулы
Единица измерения модуля Юнга в СИ — Ньютон на метр в квадрате (Н/м²), т.е. Паскаль (Па).
Формулы
Существует несколько формул, из которых можно вычислить модуль Юнга. Например, закон Гука.
Закон Гука
Можно вычислить модуль Юнга через эти формулы (мы это и сделаем на примере). Из-за этого закона существуют несколько интересных равенств, которые могут быть полезны для расчётов.
Закон Гука (этот описывает явления в теле, в дифференциальной форме):
Закон Гука (этот описывает явления в теле)
Следует заметить, что этот закон действует до той точки, когда материал необратимо деформируется и уже не возвращается в свою первоначальную форму. В какой точке это происходит, уже зависит от материала. Если материал очень жёсткий (значит высокое показание модуля упругости), то эта точка может совпадать с разрывом/деформацией.
Другие формулы вычисления модуля Юнга (модуля упругости)
Либо можно выразить k (жёсткость тела):
Пример решения задачи (через закон Гука):
Проволока длиной 2,5 метра и площадью поперечного сечения 2,5 миллиметра² удлинилась на 1 миллиметр под действием силы 50 ньютонов. Определить модуль Юнга.
Будем искать через закон Гука (σ = E × ε).
Помним из закона Гука:
σ = F / S (помните, что Fупр/S — механическое напряжение, обозначается как σ)
ε = Δl/l (а это относительное удлинение, обозначается как ε)
Подставляем в формулу (σ = E × ε):
Например, в нашей таблице такой модуль Юнга имеет кадмий.
Модуль упругости стали
Редакция E-metall Опубликовано 2021-03-27
При проектировании стальных изделий или элементов конструкций учитывают способность сплава выдерживать разнонаправленные виды нагрузок: ударные, изгибающие, растягивающие, сжимающие. Значение модуля упругости стали, наряду с твердостью и другими характеристиками, показывает стойкость к этим воздействиям.
Например, в железобетонном строительстве используют продольные и поперечные арматурные стержни. В горизонтальной плоскости они подвержены растяжению, а в вертикальной — давлению всей массы конструкции. В местах концентрации напряжений: углы, технологические проемы, лифтовые шахты и лестничные пролеты — размещают большее количество арматуры. Способность бетона впитывать воду служит причиной постоянных изменений сжимающих и растягивающих нагрузок.
Рассмотрим другой пример. В военное время создавалось множество разработок в сфере авиации. Самыми частыми причинами катастроф были возгорания двигателей. Отрываясь от земли, самолет попадает в атмосферные слои с разреженным воздухом и его корпус расширяется, обратный процесс происходит при посадке. Кроме этого, на конструкцию воздействует сопротивление воздушных потоков, давление искривленных слоев воздуха и другие силы. Несмотря на прочность, существующие в то время сплавы не всегда были пригодны для изготовления ответственных деталей, в основном, это приводило к разрывам топливных баков.
В различных видах промышленности из стали изготавливают детали подвижных механизмов: пружины, рессоры. Марки, используемые для таких целей, не склонны к трещинообразованию при постоянно изменяющихся нагрузках.
Модуль упругости стали
Упругость твердых тел — это способность принимать исходную форму после прекращения деформирующих воздействий. Например, брусок пластилина обладает нулевой пружинистостью, а резиновые изделия можно сжимать и растягивать. При различных применениях сил к предметам и материалам, они деформируются. В зависимости от физических свойств тела или вещества, различают два вида деформации:
Модуль упругости — название нескольких физических величин, характеризующих склонность твердого тела деформироваться упруго.
Впервые понятие было введено Томасом Юнгом. Ученый подвешивал грузы к металлическим стержням и наблюдал за их удлинением. У части образцов длина увеличилась в два раза, другие — были разорваны в ходе эксперимента.
Сегодня определение объединяет ряд свойств физических тел:
Модуль Юнга: Вычисляется по формуле E= σ/ε, где σ — напряжение, равное силе, деленной на площадь ее приложения, а ε — упругая деформация, эквивалентная отношению удлинения образца с начала деформации и сжатию после ее прекращения.
Модуль сдвига (G или μ): способность сопротивляться деформации при сохранении объема, когда направление нагрузок производится по касательной. Например, при ударе по шляпке гвоздя, если он был произведен не под прямым углом, изделие искривляется. В сопромате величину используют для вычисления сдвигов и кручения.
Модуль объемной упругости или объемного сжатия (К): изменения, вызванные действием всестороннего напряжения, например, гидростатического давления.
Коэффициент Пуансона (Ⅴ или μ): отношение поперечного сжатия к продольному удлинению, вычисляется для образцов материалов. У абсолютно хрупких веществ он равен нулю.
Константа Ламе: энергия, провоцирующая возвращение в исходную форму, вычисляется через построение скалярных комбинаций.
Модуль упругости стали соотносится с рядом других физических величин. Например, при проведении эксперимента на растяжение, важно учитывать предел прочности, превышение которого оборачивается разрушением детали.
Применение ряда подходов обусловлено требованиями к механическим свойствам материалов в разных отраслях промышленности, строительства, приборостроения.
Модуль упругости разных марок стали
Наибольшей способностью противостоять деформации обладают рессорно-пружинистые стальные сплавы. Эти материалы характеризуются высоким пределом текучести. Величина показывает напряжение, при котором деформация растет без внешних воздействий, например при сгибании и скручивании.
Характеристики упругости стали зависят от легирующих элементов и строения кристаллической решетки. Углерод придает стальному сплаву твердость, однако в высоких концентрациях снижается пластичность и пружинистость. Основные легирующие добавки, повышающие упругие свойства: кремний, марганец, никель, вольфрам.
Нередко, нужных показателей можно достичь лишь с помощью специальных режимов термообработки. Таким образом все фрагменты детали будут иметь единые показатели текучести, а слабые участки будут исключены. В противном случае изделие может надломиться, лопнуть или растрескаться. Марки 60Г и 65Г обладают такими характеристиками, как сопротивление разрыву, вязкость, стойкость к износу, они применяются для изготовления промышленных пружин и музыкальных струн.
В металлургической промышленности создано несколько сотен марок стали с разными модулями упругости. В таблице приведены характеристики популярных сплавов.
Таблица модулей прочности марок стали
Наименование стали | Модуль упругости Юнга, 10¹²·Па | Модуль сдвигаG, 10¹²·Па | Модуль объемной упругости, 10¹²·Па | Коэффициент Пуассона, 10¹²·Па |
Сталь низкоуглеродистая | 165…180 | 87…91 | 45…49 | 154…168 |
Сталь 3 | 179…189 | 93…102 | 49…52 | 164…172 |
Сталь 30 | 194…205 | 105…108 | 72…77 | 182…184 |
Сталь 45 | 211…223 | 115…130 | 76…81 | 192…197 |
Сталь 40Х | 240…260 | 118…125 | 84…87 | 210…218 |
65Г | 235…275 | 112…124 | 81…85 | 208…214 |
Х12МФ | 310…320 | 143…150 | 94…98 | 285…290 |
9ХС, ХВГ | 275…302 | 135…145 | 87…92 | 264…270 |
4Х5МФС | 305…315 | 147…160 | 96…100 | 291…295 |
3Х3М3Ф | 285…310 | 135…150 | 92…97 | 268…273 |
Р6М5 | 305…320 | 147…151 | 98…102 | 294…300 |
Р9 | 320…330 | 155…162 | 104…110 | 301…312 |
Р18 | 325…340 | 140…149 | 105…108 | 308…318 |
Р12МФ5 | 297…310 | 147…152 | 98…102 | 276…280 |
У7, У8 | 302…315 | 154…160 | 100…106 | 286…294 |
У9, У10 | 320…330 | 160…165 | 104…112 | 305…311 |
У11 | 325…340 | 162…170 | 98…104 | 306…314 |
У12, У13 | 310…315 | 155…160 | 99…106 | 298…304 |
Модуль упругости для металлов и сплавов
Наименование материала | Значение модуля упругости, 10¹²·Па |
Алюминий | 65—72 |
Дюралюминий | 69—76 |
Железо, содержание углерода менее 0,08 % | 165—186 |
Латунь | 88—99 |
Медь (Cu, 99 %) | 107—110 |
Никель | 200—210 |
Олово | 32—38 |
Свинец | 14—19 |
Серебро | 78—84 |
Серый чугун | 110—130 |
Сталь | 190—210 |
Стекло | 65—72 |
Титан | 112—120 |
Хром | 300—310 |
Упругость сталей
Наименование стали | Значение модуля упругости, 10¹²·Па |
Сталь низкоуглеродистая | 165—180 |
Сталь 3 | 179—189 |
Сталь 30 | 194—205 |
Сталь 45 | 211—223 |
Сталь 40Х | 240—260 |
65Г | 235—275 |
Х12МФ | 310—320 |
9ХС, ХВГ | 275—302 |
4Х5МФС | 305—315 |
3Х3М3Ф | 285—310 |
Р6М5 | 305—320 |
Р9 | 320—330 |
Р18 | 325—340 |
Р12МФ5 | 297—310 |
У7, У8 | 302—315 |
У9, У10 | 320—330 |
У11 | 325—340 |
У12, У13 | 310—315 |
Предел прочности
Твердые тела способны выдерживать ограниченные нагрузки, превышение предела приводит к разрушению структуры металла, формированию заметных сколов или микротрещин. Возникновение дефектов сопряжено со снижением эксплуатационных свойств или полным разрушением. Прочность сплавов и готовых изделий проверяют на испытательных стендах. Стандартами предусмотрен ряд испытаний:
В сложных механизмах и системах выход из строя одного элемента автоматически становится причиной повышения нагрузок на другие. Как правило, разрушения начинаются на тех участках, где напряжения максимальны. Запас прочности служит гарантией безопасности оборудования во внештатных ситуациях и продлевает срок его службы.
Модуль юнга алюминия равен 70 гпа это означает что
Модуль упругости алюминия мпа
Мо́дуль Ю́нга
(модуль продольной упругости) — физическая величина, характеризующая способность материала сопротивляться растяжению, сжатию при упругой деформации[1]. Обозначается большой буквой
Е
.
Назван в честь английского физика XIX века Томаса Юнга.
В динамических задачах механики модуль Юнга рассматривается в более общем смысле — как функционал деформируемой среды и процесса.
В Международной системе единиц (СИ) измеряется в ньютонах на квадратный метр или в паскалях. Является одним из модулей упругости.
Модуль Юнга рассчитывается следующим образом:
Через модуль Юнга вычисляется скорость распространения продольной волны в тонком стержне:
где ρ — плотность вещества.
Температурная зависимость модуля Юнга[ | ]
где M 0 > — адиабатический модуль упругости идеального кристалла при T ⟶ 0 K ; M 1 T T> — дефект модуля, обусловленный тепловыми фононами; M 2 T 2 T^ > — дефект модуля, обусловленный тепловым движением электронов проводимости[2]
Модуль упругости для стали, а также для других материалов
Перед тем, как использовать какой-либо материал в строительных работах, следует ознакомиться с его физическими характеристиками для того, чтобы знать как с ним обращаться, какое механическое воздействие будет для него приемлемым, и так далее. Одной из важных характеристик, на которые очень часто обращают внимание, является модуль упругости.
Ниже рассмотрим само понятие, а также эту величину по отношению к одному из самых популярных в строительстве и ремонтных работах материалу — стали. Также будут рассмотрены эти показатели у других материалов, ради примера.
Значения модуля Юнга для некоторых материалов[ | ]
Значения модуля Юнга для некоторых материалов приведены в таблице
Материал | модуль Юнга E, ГПа | Источник |
Алюминий | 70 | [3] |
Бронза | 75—125 | [3] |
Вольфрам | 350 | [3] |
Германий | 83 | [3] |
Графен | 1000 | [4] |
Дюралюминий | 74 | [3] |
Железо | 180 | [5] |
Иридий | 520 | [3] |
Кадмий | 50 | [3] |
Кобальт | 210 | [3] |
Константан | 163 | [3] |
Кремний | 109 | [3] |
Латунь | 95 | [3] |
Лёд | 3 | [3] |
Магний | 45 | [3] |
Манганин | 124 | [3] |
Медь | 110 | [3] |
Никель | 210 | [3] |
Ниобий | 155 | [6] |
Олово | 35 | [3] |
Свинец | 18 | [3] |
Серебро | 80 | [3] |
Серый чугун | 110 | [3] |
Сталь | 190—210 | [3] |
Стекло | 70 | [3] |
Титан | 112 | [3] |
Фарфор | 59 | [3] |
Цинк | 120 | [3] |
Хром | 300 | [3] |
Как определить модуль упругости стали
Выяснить модули упругости для различных марок стали можно несколькими путями:
Жесткость стали зависит от ее химического состава и вида кристаллической решетки, от плотности, достигнутой в результате обработки. Прочность же ее конструкций определяется такими важными факторами, как параметры изделия, в том числе габариты, эксплуатационные нагрузки, и их длительность. При расчетах, выполняемых по нормированным методикам, результат осознанно завышают, чтобы предупредить возможные аварии и поломки.
Тем не менее, устойчивость стали к деформации определяется изначально ее маркой, то есть наличием примесей в сплаве.
В таблице приведены модули упругости стали наиболее популярных марок, а модуль сдвига ее составляет – 80-81 ГПа.
Сталь | Модуль (Е), ГПа |
углеродистая | 195-205 |
легированная | 206-235 |
Ст.3, Ст.5 | 210 |
сталь 45 | 200 |
25Г2С, 30ХГ2С | 200 |
Из таблицы видно, что наименьшее значение прочности у стали 45, 25Г2С, 30ХГ2С, а у нержавеющей стали самое высокое – 235 ГПа.
Экспериментальный метод определения заключается в определении относительного удлинения небольшого стального образца на установке, с последующим расчетом.
В основе метода лежит заключение, что растяжение образца стали до предела упругости, подчиняется закону Гука (1). Зная приложенную силу (F) и площадь детали (А), выяснив ее удлинение (Δl) можно рассчитать Е:
Для проектирования конструкций необходимо всегда знать или просчитывать не менее двух разных модулей упругости. Исходя из коэффициента жесткости можно перейти к другим видам сопротивления к воздействию извне для стали: упругости при изгибе и объемной.
Примечания[ | ]
Общее понятие
При любом внешнем воздействии на предмет, внутри его возникают встречные силы, компенсирующие внешние. Для идеальных систем, находящихся в равновесии, силы равномерно распределены и равны, что позволяет сохранить форму предмета. Реальные системы не подчиняются таким правилам, что может привести к их деформации. Оценивая прочность материалов, говорят об их упругости.
Определение модуля Юнга твердых тел
Упругие материалы – это те, которые после прекращения внешнего воздействия, восстанавливают свою первоначальную форму.
Читать также: Приспособление для разметки деталей
Внутренние силы распределены равномерно по всей площади поперечного сечения предмета, имеют свою интенсивность, которая выражается количественно, называется напряжением (р) и измеряется в Н/м 2 или по международной системе Па.
Напряжение имеет свою пространственную направленность: перпендикулярно площади сечения предмета – нормальное напряжение (σz) и лежащая в плоскости сечения – касательное напряжение (τz).
Модуль упругости (Е) как единицу измерения отношения материала к линейной деформации, и нормальное напряжение связывает формула закона Гука:
где ε – относительное удлинение или деформация.
Преобразовав формулу (1) для выражения из нее нормального напряжения, можно увидеть, что Е является постоянной при относительном удлинении, и называется коэффициентом жесткости, а его единицы измерения Па, кгс/мм 2 или Н/м 2 :
Модуль упругости – это единица измерения отношения напряжения, создаваемого в материале, к линейной деформации, такой как, растяжение и сжатие.
В справочных материалах размерность модуля упругости выражается в МПа, так как деформация имеет довольно малое значение. А зависимость между этими величинами обратно пропорциональная. Таким образом, Е имеет высокое значение, определяемое 107-109.
Примечания
Образование — Физика — Простые примеры для понимания расчета модуля Юнга
Модуль Юнга-это отношение растягивающего напряжения к деформации растяжения. Это бизнес сайт статья объясняет, как рассчитать модуль Юнга, и его отношение к изменениям температуры и Гука закон. Модуль Юнга имени Томас Юнг, английский ученый 19-го века. Свойство материала возвращаться в свою первоначальную форму и размер после растяжения или сжатия называется упругости в физике. Другими словами, это свойство материала сопротивляться деформации. Это противоречит распространенному мнению, что если материал может быть растянут больше, чем другие, то она эластична. Так что по этому поводу, металлический стержень является более эластичной, чем каучук. Металлический стержень может лучше вернуть свою предыдущую форму после деформирующих сил удаляются по сравнению с резиной.
— Различные типы диодов используются в различных приложениях
Материал может быть деформирован по многим направлениям. Когда материал сопротивляется растяжения или сжатия в линейном направлении, он сказал, чтобы проявлять упругость при растяжении. Мера эта эластичность на растяжение определяется модуль Юнга. В этой статье бизнес сайт, мы объясняем термины, относящиеся к упругости, необходимые для расчета модуля Юнга. Мы также объясним, как модуль Юнга зависит от температуры и его связь с Законом Гука. Стресс✦ когда тело сжимается или вытянутые, применив силу, возникают внутренние восстановления сил в организме, которые выступают против этого изменения в свою форму.
— Объяснение теплового равновесия и формулы с примерами
✦ внутренняя возвращающая сила на единицу площади поперечного сечения тела определяется как стресс.
✦ она равна внешней деформирующей силе на единицу площади, применяемые к телу.
✦ Напряжение определяется по формуле:
σ (стресс) = Ф (сила)/а (область)
✦ Единица СИ для измерения напряжения = единица силы/единица площади = Ньютон/м2 или Паскаль Таким образом, единица напряжения такой же, как единица давления. Процедить✦ когда тело подвергается растяжению или сжатию, происходят изменения в форме тела.
✦ изменения формы тела из-за внешних деформирующих сил называется деформацией.
✦ Напряжение, таким образом, отношение изменения длины к начальной длине.
✦ Напряжение определяется по формуле:
Напряжение = расширение или сжатие/Длина = △Л/Л
✦ Единица штамма: штамм не имеет частей; она является безразмерной величиной, поскольку она представляет собой отношение двух длин измеряется в тех же единицах. Модуль Юнга✦ модуль Юнга-модуль упругости на растяжение.
✦ эластичность при растяжении указывает на способность тела подвергаются линейной деформации.
✦ тело подвергается линейной деформации, когда он растягивается или сжимается вдоль продольной оси. Модуль Юнга-это отношение растягивающего напряжения к деформации растяжения.
Формула модуль Юнга = растягивающих напряжений/деформаций = σ /ε = (F/А)/(△ Л/Л)
✦ Единица измерения модуля Юнга: Единица измерения напряжения/единица напряжения.
• Здесь Е0-модуль Юнга при 0°К • T-абсолютная температура • B-это параметр, в зависимости от свойства материала. Это наклон Кривой нарисованный модуля Юнга против. температура. Это связано с постоянной Грюнайзена γ. • Ехр (-ТМ/Т) является единственным фактором Больцмана. • ТМ-это параметр, который зависит от свойства материала, который имеет корреляции с температурой Дебая Θ. • γ и Θ факторы, связанные с теплового объемного расширения и теплоемкость материала соответственно. Модуль Юнга и Закон ГУКА LAWHooke говорится, что растяжка, что весна проходит пропорциональна усилию, приложенному к нему.
Где F-приложенная сила, x-смещение (удлинение или сжатие) производят весной, а K-весна фактор, характерный для весны. Этот закон справедлив в пределах упругого предела.
Обратите внимание, что большинство материалов ведут себя как пружины при прохождении линейной деформации. Основное различие в данном контексте, что в отличие от пружин, большинство материалов обладают районе, который необходимо учитывать. Таким образом, в вышеуказанном законе, мы можем заменить силу со стрессом и перемещения пружины с деформации и, таким образом, переписать закон так:
Таким образом, можно сделать вывод, что модуль Юнга-это коэффициент жесткости пружины по закону Гука, где длина и площадь поперечного сечения составляет 1. Смещение считается продольное. Возвращаясь к нашему сравнению упругости стали и резины, давайте понять это с точки зрения модуля Юнга. За тот же стресс, напряжение стали меньше по сравнению с резиной. Следовательно, соотношение напряжение/напряжение выше стали. По сути, модуль Юнга стали больше, чем модуль Юнга резины. Таким образом, стали более упругие, чем резина!
Механические свойства
Только при работе на растяжение или сжатие модуль (Юнга) упругости помогает угадать поведение того или иного материала. А вот при изгибе, срезе, смятии и прочих нагрузках потребуется ввести дополнительные параметры:
Читать также: Супер клей на пальцах рук как удалить
Кроме всего вышесказанного стоит упомянуть, что у некоторых материалов в зависимости от направления нагрузки разные механические свойства. Подобные материалы называются анизотропными. Примерами подобного является ткани, некоторые виды камня, слоистые пластмассы, древесина и прочее.
У материалов изотропных механические свойства и деформация упругая в любом направлении одинаковы. К таким материалам относятся металлы: алюминий, медь, чугун, сталь и прочее, а также каучук, бетон, естественные камни, пластмассы неслоистые.