На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π“Ρ€Π°Ρ„ΠΈΠΊ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π΅Π³ΠΎ свойства ΠΈ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹

На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π‘Ρ‚Π°Ρ‚ΡŒΡ находится Π½Π° ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ΅ Ρƒ мСтодистов Skysmart.
Если Π²Ρ‹ Π·Π°ΠΌΠ΅Ρ‚ΠΈΠ»ΠΈ ΠΎΡˆΠΈΠ±ΠΊΡƒ, сообщитС ΠΎΠ± этом Π² ΠΎΠ½Π»Π°ΠΉΠ½-Ρ‡Π°Ρ‚
(Π² ΠΏΡ€Π°Π²ΠΎΠΌ Π½ΠΈΠΆΠ½Π΅ΠΌ ΡƒΠ³Π»Ρƒ экрана).

ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Ѐункция β€” это Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ Β«yΒ» ΠΎΡ‚ Β«xΒ», Π³Π΄Π΅ Β«xΒ» являСтся ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π° Β«yΒ» β€” зависимой ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π—Π°Π΄Π°Ρ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, Π² соотвСтствии с ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΠΏΠΎ значСниям нСзависимой ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Π΅Π΅ значСния. Π’ΠΎΡ‚, ΠΊΠ°ΠΊΠΈΠΌΠΈ способами Π΅Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°Π΄Π°Ρ‚ΡŒ:

Π“Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ β€” это объСдинСниС всСх Ρ‚ΠΎΡ‡Π΅ΠΊ, ΠΊΠΎΠ³Π΄Π° вмСсто Β«xΒ» ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹Π΅ значСния ΠΈ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ этих Ρ‚ΠΎΡ‡Π΅ΠΊ.

ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ЛинСйная функция β€” это функция Π²ΠΈΠ΄Π° y = kx + b, Π³Π΄Π΅ Ρ… β€” нСзависимая пСрСмСнная, k, b β€” Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ числа. ΠŸΡ€ΠΈ этом k β€” ΡƒΠ³Π»ΠΎΠ²ΠΎΠΉ коэффициСнт, b β€” свободный коэффициСнт.

ГСомСтричСский смысл коэффициСнта b β€” Π΄Π»ΠΈΠ½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ отсСкаСт прямая ΠΏΠΎ оси OY, считая ΠΎΡ‚ Π½Π°Ρ‡Π°Π»Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

ГСомСтричСский смысл коэффициСнта k β€” ΡƒΠ³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° прямой ΠΊ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌΡƒ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ оси OX, считаСтся ΠΏΡ€ΠΎΡ‚ΠΈΠ² часовой стрСлки.

Если извСстно ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ…, ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρƒ.

Для удобства Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡ„ΠΎΡ€ΠΌΠ»ΡΡ‚ΡŒ Π² Π²ΠΈΠ΄Π΅ Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹:

Π“Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ являСтся прямая линия. Для Π΅Π³ΠΎ построСния достаточно Π΄Π²ΡƒΡ… Ρ‚ΠΎΡ‡Π΅ΠΊ, ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΡΡŽΡ‚ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π£Π³Π»ΠΎΠ²ΠΎΠΉ коэффициСнт ΠΎΡ‚Π²Π΅Ρ‡Π°Π΅Ρ‚ Π·Π° ΡƒΠ³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° прямой, свободный коэффициСнт β€” Π·Π° Ρ‚ΠΎΡ‡ΠΊΡƒ пСрСсСчСния Π³Ρ€Π°Ρ„ΠΈΠΊΠ° с осью ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π‘ΡƒΠΊΠ²Π΅Π½Π½Ρ‹Π΅ ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΠΈ Β«kΒ» ΠΈ Β«bΒ» β€” это числовыС коэффициСнты Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. На ΠΈΡ… мСстС ΠΌΠΎΠ³ΡƒΡ‚ ΡΡ‚ΠΎΡΡ‚ΡŒ Π»ΡŽΠ±Ρ‹Π΅ числа: ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅, ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΈΠ»ΠΈ Π΄Ρ€ΠΎΠ±ΠΈ.

Π”Π°Π²Π°ΠΉΡ‚Π΅ потрСнируСмся ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠΌ для ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, Ρ‡Π΅ΠΌΡƒ Ρ€Π°Π²Π½Ρ‹ числовыС коэффициСнты Β«kΒ» ΠΈ Β«bΒ».

Π€ΡƒΠ½ΠΊΡ†ΠΈΡΠšΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚ Β«kΒ»ΠšΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚ Β«bΒ»
y = 2x + 8k = 2b = 8
y = βˆ’x + 3k = βˆ’1b = 3
y = 1/8x βˆ’ 1k = 1/8b = βˆ’1
y = 0,2xk = 0,2b = 0

ΠœΠΎΠΆΠ΅Ρ‚ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚ΡŒΡΡ, Ρ‡Ρ‚ΠΎ Π² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Β«y = 0,2xΒ» Π½Π΅Ρ‚ числового коэффициСнта Β«bΒ», Π½ΠΎ это Π½Π΅ Ρ‚Π°ΠΊ. Π’ Π΄Π°Π½Π½ΠΎΠΌ случаС ΠΎΠ½ Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ. Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π΅ ΠΏΠΎΠ΄Π΄Π°Π²Π°Ρ‚ΡŒΡΡ сомнСниям, Π½ΡƒΠΆΠ½ΠΎ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ: Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ‚ΠΈΠΏΠ° Β«y = kx + bΒ» Π΅ΡΡ‚ΡŒ коэффициСнты Β«kΒ» ΠΈ Β«bΒ».

Π•Ρ‰Π΅ Π½Π΅ устали? Π˜Π·ΡƒΡ‡Π°Ρ‚ΡŒ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΡƒ вСсСлСС с ΠΎΠΏΡ‹Ρ‚Π½Ρ‹ΠΌ ΠΏΡ€Π΅ΠΏΠΎΠ΄Π°Π²Π°Ρ‚Π΅Π»Π΅ΠΌ Π½Π° курсах ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ Π² Skysmart!

Бвойства Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ Π΅ΡΡ‚ΡŒ аксиома: Ρ‡Π΅Ρ€Π΅Π· Π»ΡŽΠ±Ρ‹Π΅ Π΄Π²Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΌΠΎΠΆΠ½ΠΎ провСсти ΠΏΡ€ΡΠΌΡƒΡŽ ΠΈ ΠΏΡ€ΠΈΡ‚ΠΎΠΌ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄Π½Ρƒ. Π˜ΡΡ…ΠΎΠ΄Ρ ΠΈΠ· этой аксиомы слСдуСт: Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π²ΠΈΠ΄Π° Β«Ρƒ = kx + bΒ», достаточно Π½Π°ΠΉΡ‚ΠΈ всСго Π΄Π²Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. А для этого Π½ΡƒΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΄Π²Π° значСния Ρ…, ΠΏΠΎΠ΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΈΡ… Π² ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ значСния y.

НапримСр, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = 1 /3x + 2, ΠΌΠΎΠΆΠ½ΠΎ Π²Π·ΡΡ‚ΡŒ Ρ… = 0 ΠΈ Ρ… = 3, Ρ‚ΠΎΠ³Π΄Π° ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ этих Ρ‚ΠΎΡ‡Π΅ΠΊ Π±ΡƒΠ΄ΡƒΡ‚ Ρ€Π°Π²Π½Ρ‹ Ρƒ = 2 ΠΈ Ρƒ = 3. ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠΌ Ρ‚ΠΎΡ‡ΠΊΠΈ А (0; 2) ΠΈ Π’ (3; 3). Π‘ΠΎΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΈΡ… ΠΈ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ Ρ‚Π°ΠΊΠΎΠΉ Π³Ρ€Π°Ρ„ΠΈΠΊ:

На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = kx + b коэффициСнт k ΠΎΡ‚Π²Π΅Ρ‡Π°Π΅Ρ‚ Π·Π° Π½Π°ΠΊΠ»ΠΎΠ½ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠ΅ΠΌ рисунок. ВсС Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ Π½Π°ΠΊΠ»ΠΎΠ½Π΅Π½Ρ‹ Π²ΠΏΡ€Π°Π²ΠΎ, ΠΏΠΎΡ‚ΠΎΠΌΡƒ Ρ‡Ρ‚ΠΎ Π²ΠΎ всСх функциях коэффициСнт k большС нуля. ΠŸΡ€ΠΈΡ‡Π΅ΠΌ, Ρ‡Π΅ΠΌ большС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ k, Ρ‚Π΅ΠΌ ΠΊΡ€ΡƒΡ‡Π΅ ΠΈΠ΄Π΅Ρ‚ прямая.

Π’ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ b = 3, поэтому всС Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ ось OY Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ (0; 3).

На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’ этот Ρ€Π°Π· Π²ΠΎ всСх функциях коэффициСнт k мСньшС нуля, ΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π½Π°ΠΊΠ»ΠΎΠ½Π΅Π½Ρ‹ Π²Π»Π΅Π²ΠΎ. Π§Π΅ΠΌ большС k, Ρ‚Π΅ΠΌ ΠΊΡ€ΡƒΡ‡Π΅ ΠΈΠ΄Π΅Ρ‚ прямая.

ΠšΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚ b Ρ€Π°Π²Π΅Π½ Ρ‚Ρ€Π΅ΠΌ, ΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ ось OY Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ (0; 3).

На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’Π΅ΠΏΠ΅Ρ€ΡŒ Π²ΠΎ всСх уравнСниях Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ коэффициСнты k Ρ€Π°Π²Π½Ρ‹. ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ Ρ‚Ρ€ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Π΅ прямыС.

ΠŸΡ€ΠΈ этом коэффициСнты b Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹, ΠΈ эти Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ ось OY Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ‚ΠΎΡ‡ΠΊΠ°Ρ…:

ΠŸΡ€ΡΠΌΡ‹Π΅ Π±ΡƒΠ΄ΡƒΡ‚ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ Ρ‚ΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° Ρƒ Π½ΠΈΡ… ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚ ΡƒΠ³Π»ΠΎΠ²Ρ‹Π΅ коэффициСнты.

ΠŸΠΎΠ΄Ρ‹Ρ‚ΠΎΠΆΠΈΠΌ. Если ΠΌΡ‹ Π·Π½Π°Π΅ΠΌ Π·Π½Π°ΠΊΠΈ коэффициСнтов k ΠΈ b, Ρ‚ΠΎ ΠΌΠΎΠΆΠ΅ΠΌ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ, ΠΊΠ°ΠΊ выглядит Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = kx + b.

Если k 0, Ρ‚ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = kx + b выглядит Ρ‚Π°ΠΊ:

0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc1049363f94987951092.png» style=»height: 600px;»>

Если k > 0 ΠΈ b > 0, Ρ‚ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = kx + b выглядит Ρ‚Π°ΠΊ:

0 ΠΈ b > 0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc104b2640e6151326286.png» style=»height: 600px;»>

Π’ΠΎΡ‡ΠΊΠΈ пСрСсСчСния Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = kx + b с осями ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚:

РСшСниС Π·Π°Π΄Π°Ρ‡ Π½Π° Π»ΠΈΠ½Π΅ΠΉΠ½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ

Π§Ρ‚ΠΎΠ±Ρ‹ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ Π·Π°Π΄Π°Ρ‡ΠΈ ΠΈ ΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, Π½ΡƒΠΆΠ½ΠΎ Ρ€Π°ΡΡΡƒΠΆΠ΄Π°Ρ‚ΡŒ ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ свойства ΠΈ ΠΏΡ€Π°Π²ΠΈΠ»Π° Π²Ρ‹ΡˆΠ΅. Π”Π°Π²Π°ΠΉΡ‚Π΅ потрСнируСмся!

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 2. ΠΠ°ΠΏΠΈΡΠ°Ρ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, которая ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΠΈ A (1; 1); B (2; 4).

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ЛинСйная функция Β« y = kx + b Β» ΠΈ Π΅Ρ‘ Π³Ρ€Π°Ρ„ΠΈΠΊ

ΠŸΡ€Π΅ΠΆΠ΄Π΅ Ρ‡Π΅ΠΌ ΠΏΠ΅Ρ€Π΅ΠΉΡ‚ΠΈ ΠΊ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Β« y = kx Β» Π²Π½ΠΈΠΌΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΠΈΠ·ΡƒΡ‡ΠΈΡ‚Π΅ ΡƒΡ€ΠΎΠΊ
Β«Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ функция Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅Β» ΠΈ «Как Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ Π·Π°Π΄Π°Ρ‡ΠΈ Π½Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽΒ».

Π€ΡƒΠ½ΠΊΡ†ΠΈΡŽ Π²ΠΈΠ΄Π° Β« y = kx + b Β» Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ.

ВмСсто Β« k Β» ΠΈ Β« b Β» ΠΌΠΎΠ³ΡƒΡ‚ ΡΡ‚ΠΎΡΡ‚ΡŒ Π»ΡŽΠ±Ρ‹Π΅ числа (ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅, ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΈΠ»ΠΈ Π΄Ρ€ΠΎΠ±ΠΈ).

Π”Ρ€ΡƒΠ³ΠΈΠΌΠΈ словами, ΠΌΠΎΠΆΠ½ΠΎ ΡΠΊΠ°Π·Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ Β« y = kx + b Β» β€” это сСмСйство всСвозмоТных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, Π³Π΄Π΅ вмСсто Β« k Β» ΠΈ Β« b Β» стоят числа.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Ρ‚ΠΈΠΏΠ° Β« y = kx + b Β».

Π€ΡƒΠ½ΠΊΡ†ΠΈΡΠšΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚ Β« k Β»ΠšΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚ Β« b Β»
y = 5x + 3k = 5b = 3
y = βˆ’x + 1k = βˆ’1b = 1
y =

2
3

x βˆ’ 2

k =

2
3
b = βˆ’2
y = 0,5xk = 0,5b = 0

ΠžΠ±Ρ€Π°Ρ‚ΠΈΡ‚Π΅ особоС Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ Β« y = 0,5x Β» Π² Ρ‚Π°Π±Π»ΠΈΡ†Π΅. Часто ΡΠΎΠ²Π΅Ρ€ΡˆΠ°ΡŽΡ‚ ΠΎΡˆΠΈΠ±ΠΊΡƒ ΠΏΡ€ΠΈ поискС Π² Π½Π΅ΠΉ числового коэффициСнта Β« b Β».

Рассматривая Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ Β« y = 0,5x Β», Π½Π΅Π²Π΅Ρ€Π½ΠΎ ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ числового коэффициСнта Β« b Β» Π² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π΅Ρ‚.

Как ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
Β« y = kx + b Β»

Из Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ вспомним аксиому (ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π½Π΅ Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²), Ρ‡Ρ‚ΠΎ Ρ‡Π΅Ρ€Π΅Π· Π»ΡŽΠ±Ρ‹Π΅ Π΄Π²Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΌΠΎΠΆΠ½ΠΎ провСсти ΠΏΡ€ΡΠΌΡƒΡŽ ΠΈ ΠΏΡ€ΠΈΡ‚ΠΎΠΌ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄Π½Ρƒ.

Π˜ΡΡ…ΠΎΠ΄Ρ ΠΈΠ· аксиомы Π²Ρ‹ΡˆΠ΅ слСдуСт, Ρ‡Ρ‚ΠΎ Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π²ΠΈΠ΄Π°
Β« Ρƒ = kx + b Β» Π½Π°ΠΌ достаточно Π±ΡƒΠ΄Π΅Ρ‚ Π½Π°ΠΉΡ‚ΠΈ всСго Π΄Π²Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ.

Для ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π° построим Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Β« y = βˆ’2x + 1 Β».

НайдСм Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Β« y Β» для Π΄Π²ΡƒΡ… ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Β« x Β». ΠŸΠΎΠ΄ΡΡ‚Π°Π²ΠΈΠΌ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, вмСсто Β« x Β» числа Β« 0 Β» ΠΈ Β« 1 Β».

Выбирая ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹Π΅ числовыС значСния вмСсто Β« x Β», Π»ΡƒΡ‡ΡˆΠ΅ Π±Ρ€Π°Ρ‚ΡŒ числа Β« 0 Β» ΠΈ Β« 1 Β». Π‘ этими числами Π»Π΅Π³ΠΊΠΎ Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡ‚ΡŒ расчСты.

ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ значСния Β« x Β» ΠΈ Β« y Β» β€” это ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡Π΅ΠΊ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π—Π°ΠΏΠΈΡˆΠ΅ΠΌ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡Π΅ΠΊ Β« y = βˆ’2x + 1 Β» Π² Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ.

Π’ΠΎΡ‡ΠΊΠ°ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° ΠΏΠΎ оси Β« Оx Β» (абсцисса)ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° ΠΏΠΎ оси Β« Оy Β» (ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°)
(Β·)A01
(Β·)B1βˆ’1

ΠžΡ‚ΠΌΠ΅Ρ‚ΠΈΠΌ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅ΠΌ ΠΏΡ€ΡΠΌΡƒΡŽ Ρ‡Π΅Ρ€Π΅Π· ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½Π½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π­Ρ‚Π° прямая Π±ΡƒΠ΄Π΅Ρ‚ ΡΠ²Π»ΡΡ‚ΡŒΡΡ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Β« y = βˆ’2x + 1 Β».

На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Как Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ Π·Π°Π΄Π°Ρ‡ΠΈ Π½Π°
Π»ΠΈΠ½Π΅ΠΉΠ½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ Β« y = kx + b Β»

ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Β« y = 2x + 3 Β». Найти ΠΏΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ:

Π’Π½Π°Ρ‡Π°Π»Π΅ построим Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Β« y = 2x + 3 Β».

Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ ΠΏΡ€Π°Π²ΠΈΠ»Π°, ΠΏΠΎ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΠΌΡ‹ строили Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π²Ρ‹ΡˆΠ΅. Для построСния Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Β« y = 2x + 3 Β» достаточно Π½Π°ΠΉΡ‚ΠΈ всСго Π΄Π²Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ.

Π’Ρ‹Π±Π΅Ρ€Π΅ΠΌ Π΄Π²Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹Ρ… числовых значСния для Β« x Β». Для удобства расчСтов Π²Ρ‹Π±Π΅Ρ€Π΅ΠΌ числа Β« 0 Β» ΠΈ Β« 1 Β».

Π’Ρ‹ΠΏΠΎΠ»Π½ΠΈΠΌ расчСты ΠΈ запишСм ΠΈΡ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π² Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ.

Π’ΠΎΡ‡ΠΊΠ°ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°
по оси « Оx »
ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°
по оси « Оy »
(Β·)A0y(0) = 2 Β· 0 + 3 = 3
(Β·)B1y(1) = 2 Β·1 + 3 = 5

ΠžΡ‚ΠΌΠ΅Ρ‚ΠΈΠΌ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π‘ΠΎΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ прямой. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Π°Ρ прямая Π±ΡƒΠ΄Π΅Ρ‚ ΡΠ²Π»ΡΡ‚ΡŒΡΡ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Β« y = 2x + 3 Β».

На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’Π΅ΠΏΠ΅Ρ€ΡŒ Ρ€Π°Π±ΠΎΡ‚Π°Π΅ΠΌ с построСнным Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Β« y = 2x + 3 Β».

Π’Π΅ΠΌΡƒ «Как ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΒ» с Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΌΡ‹ ΡƒΠΆΠ΅ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ рассматривали Π² ΡƒΡ€ΠΎΠΊΠ΅ «Как Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ Π·Π°Π΄Π°Ρ‡ΠΈ Π½Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽΒ».

Π’ этому ΡƒΡ€ΠΎΠΊΠ΅ для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ΠΈ Π²Ρ‹ΡˆΠ΅ вспомним Ρ‚ΠΎΠ»ΡŒΠΊΠΎ основныС ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρ‹.

Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Β« y Β» ΠΏΠΎ извСстному Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ Β« x Β» Π½Π° Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ:

На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π—Π°ΠΏΠΈΡˆΠ΅ΠΌ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π² Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ.

Π—Π°Π΄Π°Π½Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Β« x Β»ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ΅ с Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Β« y Β»
βˆ’11
27
39
513

На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π—Π°ΠΏΠΈΡˆΠ΅ΠΌ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π² Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ.

Π—Π°Π΄Π°Π½Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Β« y Β»ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ΅ с Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Β« x Β»
βˆ’1βˆ’2
0βˆ’1,5
1βˆ’1
40,5

Как ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ, ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Π»ΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ

Рассмотрим Π΄Ρ€ΡƒΠ³ΠΎΠ΅ Π·Π°Π΄Π°Π½ΠΈΠ΅.

Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ½ΠΎΡΡ‚ΡŒ Ρ‚ΠΎΡ‡ΠΊΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π΅Ρ‚ нСобходимости ΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Достаточно ΠΏΠΎΠ΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ (ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρƒ ΠΏΠΎ оси Β« Ox Β» вмСсто Β« x Β», Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρƒ ΠΏΠΎ оси Β« Oy Β» вмСсто Β« y Β») ΠΈ Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ арифмСтичСскиС расчСты.

βˆ’2 = 2 Β· 1 βˆ’

1
3

βˆ’2 = 2 βˆ’

1
3

βˆ’2 = 1

3
3

βˆ’

1
3

βˆ’2 = 1

2
3

(Π½Π΅Π²Π΅Ρ€Π½ΠΎ)

Как Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ пСрСсСчСния Π³Ρ€Π°Ρ„ΠΈΠΊΠ° с осями

Найти ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡Π΅ΠΊ пСрСсСчСния Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Β« y = βˆ’1,5x + 3 Β» с осями ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

Для Π½Π°Ρ‡Π°Π»Π° построим Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Β« y = βˆ’1,5x + 3 Β» ΠΈ Π½Π° Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ ΠΎΡ‚ΠΌΠ΅Ρ‚ΠΈΠΌ Ρ‚ΠΎΡ‡ΠΊΠΈ пСрСсСчСния с осями.

Для построСния Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π΄Π²ΡƒΡ… Ρ‚ΠΎΡ‡Π΅ΠΊ
Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Β« y = βˆ’1,5x + 3 Β».

Π’ΠΎΡ‡ΠΊΠ°ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°
по оси « Оx »
ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°
по оси « Оy »
(Β·)A0y(0) = βˆ’1,5 Β· 0 + 3 = 3
(Β·)B1y(1) = βˆ’1,5 Β· 1 + 3 = 1,5

ΠžΡ‚ΠΌΠ΅Ρ‚ΠΈΠΌ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅ΠΌ Ρ‡Π΅Ρ€Π΅Π· Π½ΠΈΡ… ΠΏΡ€ΡΠΌΡƒΡŽ. Π’Π΅ΠΌ самым ΠΌΡ‹ построим Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Β« y = βˆ’1,5x + 3 Β».

На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’Π΅ΠΏΠ΅Ρ€ΡŒ Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡Π΅ΠΊ пСрСсСчСния Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ с осями ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ пСрСсСчСния Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
с осью Β« Oy Β» (осью ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚) Π½ΡƒΠΆΠ½ΠΎ:

ΠŸΠΎΠ΄ΡΡ‚Π°Π²ΠΈΠΌ вмСсто Β« x Β» Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Β« y = βˆ’1,5x + 3 Β» число ноль.

Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ пСрСсСчСния Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
с осью Β« Ox Β» (осью абсцисс) Π½ΡƒΠΆΠ½ΠΎ:

ΠŸΠΎΠ΄ΡΡ‚Π°Π²ΠΈΠΌ вмСсто Β« y Β» Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Β« y = βˆ’1,5x + 3 Β» число ноль.

Π§Ρ‚ΠΎΠ±Ρ‹ Π±Ρ‹Π»ΠΎ ΠΏΡ€ΠΎΡ‰Π΅ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ, ΠΊΠ°ΠΊΡƒΡŽ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρƒ Ρ‚ΠΎΡ‡ΠΊΠΈ Π½ΡƒΠΆΠ½ΠΎ ΠΏΡ€ΠΈΡ€Π°Π²Π½ΠΈΠ²Π°Ρ‚ΡŒ ΠΊ Π½ΡƒΠ»ΡŽ, Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡ‚Π΅ Β«ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ противополоТности».

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Как ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ a, b ΠΈ c ΠΏΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, Π²Π°ΠΌ попался Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ \(y=ax^2+bx+c\) ΠΈ Π½ΡƒΠΆΠ½ΠΎ ΠΏΠΎ этому Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ коэффициСнты \(a\), \(b\) ΠΈ \(c\). Π’ этой ΡΡ‚Π°Ρ‚ΡŒΠ΅ я расскаТу 3 простых способа ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ это.

1 способ – ΠΈΡ‰Π΅ΠΌ коэффициСнты Π½Π° Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅

Π”Π°Π½Π½Ρ‹ΠΉ способ Ρ…ΠΎΡ€ΠΎΡˆ, ΠΊΠΎΠ³Π΄Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΈ Ρ‚ΠΎΡ‡ΠΊΠ° пСрСсСчСния ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ с осью \(y\) – Ρ†Π΅Π»Ρ‹Π΅ числа. Если это Π½Π΅ Ρ‚Π°ΠΊ, ΡΠΎΠ²Π΅Ρ‚ΡƒΡŽ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ способ 2.

ΠšΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚ \(a\) ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… Ρ„Π°ΠΊΡ‚ΠΎΠ²:

— Если \(a>0\), Ρ‚ΠΎ Π²Π΅Ρ‚Π²ΠΈ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹Ρ… Π²Π²Π΅Ρ€Ρ…, Ссли \(a 1\), Ρ‚ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊ вытянут Π²Π²Π΅Ρ€Ρ… Π² \(a\) Ρ€Π°Π· ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Β«Π±Π°Π·ΠΎΠ²Ρ‹ΠΌΒ» Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ (Ρƒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ \(a=1\)). Π’Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈ этом остаСтся Π½Π° мСстС. Π­Ρ‚ΠΎ наглядно Π²ΠΈΠ΄Π½ΠΎ ΠΏΠΎ Π²Ρ‹Π΄Π΅Π»Π΅Π½Π½Ρ‹ΠΌ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌ.

На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π˜Ρ‰Π΅ΠΌ 3 Ρ‚ΠΎΡ‡ΠΊΠΈ с Ρ†Π΅Π»Ρ‹ΠΌΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ, ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π΅.
ΠŸΡ€ΠΈΠΌΠ΅Ρ€:

На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ВыписываСм ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ этих Ρ‚ΠΎΡ‡Π΅ΠΊ ΠΈ подставляСм Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ: \(y=ax^2+bx+c\). ΠŸΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡΡ систСма с трСмя уравнСниями.

РСшаСм систСму.
ΠŸΡ€ΠΈΠΌΠ΅Ρ€:

Π’Ρ‹Ρ‡Ρ‚Π΅ΠΌ ΠΈΠ· Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ уравнСния ΠΏΠ΅Ρ€Π²ΠΎΠ΅:

ΠŸΠΎΠ΄ΡΡ‚Π°Π²ΠΈΠΌ \(9a\) вмСсто \(b\):

ΠŸΠ΅Ρ€Π²ΠΎΠ΅ ΠΈ Π²Ρ‚ΠΎΡ€ΠΎΠ΅ уравнСния совпали (это Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎ для Ρ‚ΠΎΡ‡Π΅ΠΊ, симмСтричных ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ прямой проходящСй Ρ‡Π΅Ρ€Π΅Π· Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ – ΠΊΠ°ΠΊ Ρ‚ΠΎΡ‡ΠΊΠΈ \(A\) ΠΈ \(B\) Π² нашСм случаС), Π½ΠΎ нас это Π½Π΅ остановит – ΠΌΡ‹ Π²Ρ‹Ρ‡Ρ‚Π΅ΠΌ ΠΈΠ· Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅:

ΠŸΠΎΠ΄ΡΡ‚Π°Π²ΠΈΠΌ Π² ΠΏΠ΅Ρ€Π²ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ \(a\):

ΠŸΠΎΠ»ΡƒΡ‡Π°Π΅Ρ‚ΡΡ квадратичная функция: \(y=-x^2-9x-15\).

На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π‘Ρ€Π°Π·Ρƒ Π·Π°ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ ΠΏΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ ΠΌΠΎΠΆΠ½ΠΎ сразу ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ \(c=4\). Π­Ρ‚ΠΎ сильно ΠΎΠ±Π»Π΅Π³Ρ‡ΠΈΡ‚ Π½Π°ΡˆΡƒ систСму – Π½Π°ΠΌ Ρ…Π²Π°Ρ‚ΠΈΡ‚ 2 Ρ‚ΠΎΡ‡Π΅ΠΊ. Π’Ρ‹Π±Π΅Ρ€Π΅ΠΌ ΠΈΡ… Π½Π° ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π΅: \(C(-1;8)\), \(D(1;2)\) (Π½Π° самом Π΄Π΅Π»Π΅, Ссли ΠΏΡ€ΠΈΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒΡΡ, Ρ‚ΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ эти Ρ‚ΠΎΡ‡ΠΊΠΈ Π²Ρ‹Π΄Π΅Π»Π΅Π½Ρ‹ ΠΆΠΈΡ€Π½ΠΎ Π½Π° ΠΈΠ·Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ΅ – это Π²Π°ΠΌ подсказка ΠΎΡ‚ Π°Π²Ρ‚ΠΎΡ€ΠΎΠ² Π·Π°Π΄Π°Ρ‡ΠΈ).

На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ ΠΈΠΌΠ΅Π΅ΠΌ систСму:

Π‘Π»ΠΎΠΆΠΈΠΌ 2 уравнСния:

ΠŸΠΎΠ΄ΡΡ‚Π°Π²ΠΈΠΌ Π²ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅:

Π’Π΅ΠΏΠ΅Ρ€ΡŒ Π½Π°ΠΉΠ΄Π΅ΠΌ Ρ‚ΠΎΡ‡ΠΊΠΈ пСрСсСчСния Π΄Π²ΡƒΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ:

Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρƒ Π²Ρ‚ΠΎΡ€ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ пСрСсСчСния:

3 способ – ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

Π­Ρ‚ΠΎΡ‚ способ быстрСС ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ ΠΈ Π±ΠΎΠ»Π΅Π΅ ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½Ρ‹ΠΉ, Π² частности ΠΎΠ½ ΠΌΠΎΠΆΠ΅Ρ‚ пригодится ΠΈ Π² Π·Π°Π΄Π°Ρ‡Π°Ρ… Π½Π° Π΄Ρ€ΡƒΠ³ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π‘Π°ΠΌ способ базируСтся Π½Π° ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… идСях:

Π“Ρ€Π°Ρ„ΠΈΠΊ \(y=-x^2\) симмСтричСн ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ оси \(x\) Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ \(y=x^2\).

На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

– Если \(a>1\) Π³Ρ€Π°Ρ„ΠΈΠΊ \(y=ax^2\) получаСтся растяТСниСм Π³Ρ€Π°Ρ„ΠΈΠΊΠ° \(y=x^2\) вдоль оси \(y\) Π² \(a\) Ρ€Π°Π·.
– Если \(a∈(0;1)\) Π³Ρ€Π°Ρ„ΠΈΠΊ \(y=ax^2\) получаСтся сТатиСм Π³Ρ€Π°Ρ„ΠΈΠΊΠ° \(y=x^2\) вдоль оси \(y\) Π² \(a\) Ρ€Π°Π·.

На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

– Π“Ρ€Π°Ρ„ΠΈΠΊ \(y=a(x+d)^2\) получаСтся сдвигом Π³Ρ€Π°Ρ„ΠΈΠΊΠ° \(y=ax^2\) Π²Π»Π΅Π²ΠΎ Π½Π° \(d\) Π΅Π΄ΠΈΠ½ΠΈΡ†.
— Π“Ρ€Π°Ρ„ΠΈΠΊ \(y=a(x-d)^2\) получаСтся сдвигом Π³Ρ€Π°Ρ„ΠΈΠΊΠ° \(y=ax^2\) Π²ΠΏΡ€Π°Π²ΠΎ Π½Π° \(d\) Π΅Π΄ΠΈΠ½ΠΈΡ†.

На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π“Ρ€Π°Ρ„ΠΈΠΊ \(y=a(x+d)^2+e\) получаСтся пСрСносом Π³Ρ€Π°Ρ„ΠΈΠΊΠ° \(y=a(x+d)^2\) Π½Π° \(e\) Π΅Π΄ΠΈΠ½ΠΈΡ† Π²Π²Π΅Ρ€Ρ….
Π“Ρ€Π°Ρ„ΠΈΠΊ \(y=a(x+d)^2-e\) получаСтся пСрСносом Π³Ρ€Π°Ρ„ΠΈΠΊΠ° \(y=a(x+d)^2\) Π½Π° \(e\) Π΅Π΄ΠΈΠ½ΠΈΡ† Π²Π½ΠΈΠ·.

На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π‘Π½Π°Ρ‡Π°Π»Π° смотрим Π½Π° Π΅Ρ‘ Ρ„ΠΎΡ€ΠΌΡƒ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½ΠΎΡΡ‚ΡŒ Π΅Ρ‘ Π²Π΅Ρ‚Π²Π΅ΠΉ. Π’ΠΈΠ΄ΠΈΠΌ, Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΠ° стандартная, базовая ΠΈ Π²Π΅Ρ‚Π²ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π²Π΅Ρ€Ρ…, поэтому \(a=1\). Π’ΠΎ Π΅ΡΡ‚ΡŒ ΠΎΠ½Π° ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π° пСрСмСщСниями Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Π±Π°Π·ΠΎΠ²ΠΎΠΉ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ \(y=x^2\).

На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

А ΠΊΠ°ΠΊ Π½Π°Π΄ΠΎ Π±Ρ‹Π»ΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π°Ρ‚ΡŒ Π·Π΅Π»Π΅Π½Ρ‹ΠΉ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ‡Ρ‚ΠΎΠ± ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΎΡ€Π°Π½ΠΆΠ΅Π²Ρ‹ΠΉ? Надо ΡΠ΄Π²ΠΈΠ½ΡƒΡ‚ΡŒΡΡ Π²ΠΏΡ€Π°Π²ΠΎ Π½Π° ΠΏΡΡ‚ΡŒ Π΅Π΄ΠΈΠ½ΠΈΡ† ΠΈ Π²Π½ΠΈΠ· Π½Π° \(4\).

На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’ΠΎ Π΅ΡΡ‚ΡŒ наша функция выглядит Ρ‚Π°ΠΊ: \(y=(x-5)^2-4\).
ПослС раскрытия скобок ΠΈ привСдСния ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Ρ… ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ ΠΈΡΠΊΠΎΠΌΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ:

На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ \(f(6)\), Π½Π°Π΄ΠΎ сначала ΡƒΠ·Π½Π°Ρ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ \(f(x)\). НайдСм Π΅Ρ‘:

ΠŸΠ°Ρ€Π°Π±ΠΎΠ»Π° растянута Π½Π° \(2\) ΠΈ Π²Π΅Ρ‚Π²ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π½ΠΈΠ·, поэтому \(a=-2\). Π˜Π½Ρ‹ΠΌΠΈ словами, ΠΏΠ΅Ρ€Π²ΠΎΠ½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ, ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π°Π΅ΠΌΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ являСтся функция \(y=-2x^2\).

На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠŸΠ°Ρ€Π°Π±ΠΎΠ»Π° смСщСна Π½Π° 2 ΠΊΠ»Π΅Ρ‚ΠΎΡ‡ΠΊΠΈ Π²ΠΏΡ€Π°Π²ΠΎ, поэтому \(y=-2(x-2)^2\).

ΠŸΠ°Ρ€Π°Π±ΠΎΠ»Π° поднята Π½Π° 4 ΠΊΠ»Π΅Ρ‚ΠΎΡ‡ΠΊΠΈ Π²Π²Π΅Ρ€Ρ…, поэтому \(y=-2(x-2)^2+4\).

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π›ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ называСтся функция Π²ΠΈΠ΄Π° y = kx + b, заданная Π½Π° мноТСствС всСх Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… чисСл. Π—Π΄Π΅ΡΡŒ k – ΡƒΠ³Π»ΠΎΠ²ΠΎΠΉ коэффициСнт (Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ число), b – свободный Ρ‡Π»Π΅Π½ (Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ число), x – нСзависимая пСрСмСнная.

Π’ частном случаС, Ссли k = 0, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ ΠΏΠΎΡΡ‚ΠΎΡΠ½Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ y = b, Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π΅ΡΡ‚ΡŒ прямая, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π°Ρ оси Ox, проходящая Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ с ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ (0; b).

Если b = 0, Ρ‚ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ y = kx, которая являСтся прямой ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ.

ГСомСтричСский смысл коэффициСнта b – Π΄Π»ΠΈΠ½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ отсСкаСт прямая ΠΏΠΎ оси Oy, считая ΠΎΡ‚ Π½Π°Ρ‡Π°Π»Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

ГСомСтричСский смысл коэффициСнта k – ΡƒΠ³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° прямой ΠΊ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌΡƒ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ оси Ox, считаСтся ΠΏΡ€ΠΎΡ‚ΠΈΠ² часовой стрСлки.

Бвойства Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

1) ΠžΠ±Π»Π°ΡΡ‚ΡŒ опрСдСлСния Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π΅ΡΡ‚ΡŒ вся вСщСствСнная ось;

2) Если k β‰  0, Ρ‚ΠΎ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π΅ΡΡ‚ΡŒ вся вСщСствСнная ось. Если k = 0, Ρ‚ΠΎ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ состоит ΠΈΠ· числа b;

3) Π§Π΅Ρ‚Π½ΠΎΡΡ‚ΡŒ ΠΈ Π½Π΅Ρ‡Π΅Ρ‚Π½ΠΎΡΡ‚ΡŒ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ зависят ΠΎΡ‚ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ коэффициСнтов k ΠΈ b.

a) b β‰  0, k = 0, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, y = b – чСтная;

b) b = 0, k β‰  0, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ y = kx – нСчСтная;

c) b β‰  0, k β‰  0, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ y = kx + b – функция ΠΎΠ±Ρ‰Π΅Π³ΠΎ Π²ΠΈΠ΄Π°;

d) b = 0, k = 0, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ y = 0 – ΠΊΠ°ΠΊ чСтная, Ρ‚Π°ΠΊ ΠΈ нСчСтная функция.

4) Бвойством пСриодичности линСйная функция Π½Π΅ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚;

5) Π’ΠΎΡ‡ΠΊΠΈ пСрСсСчСния с осями ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚:

Oy: y = 0k + b = b, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ (0; b) – Ρ‚ΠΎΡ‡ΠΊΠ° пСрСсСчСния с осью ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

Π—Π°ΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅.Если b = 0 ΠΈ k = 0, Ρ‚ΠΎ функция y = 0 обращаСтся Π² ноль ΠΏΡ€ΠΈ любом Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Ρ…. Если b β‰  0 ΠΈ k = 0, Ρ‚ΠΎ функция y = b Π½Π΅ обращаСтся Π² ноль Π½ΠΈ ΠΏΡ€ΠΈ ΠΊΠ°ΠΊΠΈΡ… значСниях ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Ρ….

6) ΠŸΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ знакопостоянства зависят ΠΎΡ‚ коэффициСнта k.

y = kx + b – ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Π° ΠΏΡ€ΠΈ x ΠΈΠ· (-b/k; +∞),

b) k 0; y = kx + b ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Π° Π½Π° всСй области опрСдСлСния,

k = 0, b 0, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ y = kx + b возрастаСт Π½Π° всСй области опрСдСлСния,

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π’Π›Π˜Π―ΠΠ˜Π• ΠšΠžΠ­Π€Π€Π˜Π¦Π˜Π•ΠΠ’ΠžΠ’ Π°, b ΠΈ с НА Π ΠΠ‘ΠŸΠžΠ›ΠžΠ–Π•ΠΠ˜Π• Π“Π ΠΠ€Π˜ΠšΠ ΠšΠ’ΠΠ”Π ΠΠ’Π˜Π§ΠΠžΠ™ ЀУНКЦИИ

Онлайн-конфСрСнция

«БоврСмСнная профориСнтация ΠΏΠ΅Π΄Π°Π³ΠΎΠ³ΠΎΠ²
ΠΈ Ρ€ΠΎΠ΄ΠΈΡ‚Π΅Π»Π΅ΠΉ, пСрспСктивы Ρ€Ρ‹Π½ΠΊΠ° Ρ‚Ρ€ΡƒΠ΄Π°
ΠΈ особСнности личности подростка»

Π‘Π²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ ΠΈ скидка Π½Π° ΠΎΠ±ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΊΠ°ΠΆΠ΄ΠΎΠΌΡƒ участнику

Π£ Ρ€ ΠΎ ΠΊ 15.
ВлияниС коэффициСнтов Π°, b ΠΈ с Π½Π° располоТСниС
Π³Ρ€Π°Ρ„ΠΈΠΊΠ° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π¦Π΅Π»ΠΈ: ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ умСния ΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈ ΠΏΠ΅Ρ€Π΅Ρ‡ΠΈΡΠ»ΡΡ‚ΡŒ Π΅Π΅ свойства; Π²Ρ‹ΡΠ²ΠΈΡ‚ΡŒ влияниС коэффициСнтов Π°, b ΠΈ с Π½Π° располоТСниС Π³Ρ€Π°Ρ„ΠΈΠΊΠ° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

I. ΠžΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚.

ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅, Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ Π½Π° рисункС:

На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π±) На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Ρƒ = На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΡ… 2 – 2Ρ…;

Ρƒ = – На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΡ… 2 + 4Ρ… + 1;

Ρƒ = – На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΡ… 2 + 2Ρ… – 1.

III. Π€ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΡƒΠΌΠ΅Π½ΠΈΠΉ ΠΈ Π½Π°Π²Ρ‹ΠΊΠΎΠ².

ΠŸΡ€ΡΠΌΠ°Ρ Ρƒ = 6Ρ… + b касаСтся ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Ρƒ = Ρ… 2 + 8, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΈΠΌΠ΅Π΅Ρ‚ с Π½Π΅ΠΉ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄Π½Ρƒ ΠΎΠ±Ρ‰ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ Π² Ρ‚ΠΎΠΌ случаС, ΠΊΠΎΠ³Π΄Π° ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ 6Ρ… + b = Ρ… 2 + 8 Π±ΡƒΠ΄Π΅Ρ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ СдинствСнноС Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅.

Π­Ρ‚ΠΎ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ являСтся ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΌ, Π½Π°ΠΉΠ΄Π΅ΠΌ Π΅Π³ΠΎ дискриминант:

3. Π’Ρ‹ΡΠ²ΠΈΡ‚ΡŒ влияниС коэффициСнтов Π°, b ΠΈ с Π½Π° располоТСниС Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρƒ = Π°Ρ… 2 + bΡ… + с.

УчащиСся ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ достаточными знаниями, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ это Π·Π°Π΄Π°Π½ΠΈΠ΅ ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎ. Π‘Π»Π΅Π΄ΡƒΠ΅Ρ‚ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠΈΡ‚ΡŒ ΠΈΠΌ всС ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π²Ρ‹Π²ΠΎΠ΄Ρ‹ занСсти Π² Ρ‚Π΅Ρ‚Ρ€Π°Π΄ΡŒ, ΠΏΡ€ΠΈ этом Π²Ρ‹Π΄Π΅Π»ΠΈΠ² Β«ΠΎΡΠ½ΠΎΠ²Π½ΡƒΡŽΒ» Ρ€ΠΎΠ»ΡŒ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· коэффициСнтов.

1) ΠšΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚ Π° влияСт Π½Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅Ρ‚Π²Π΅ΠΉ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹: ΠΏΡ€ΠΈ Π° > 0 – Π²Π΅Ρ‚Π²ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π²Π΅Ρ€Ρ…, ΠΏΡ€ΠΈ Π° На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Π° 0.

4. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅, Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ°ΠΊΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ Π½Π° рисункС, ΠΎΠΏΠΈΡ€Π°ΡΡΡŒ Π½Π° Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ коэффициСнтов Π°, b ΠΈ с.

На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Ρƒ = На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΡ… 2 + 2Ρ… + 2;

По ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½Π½ΠΎΠΌΡƒ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ Π΄Π΅Π»Π°Π΅ΠΌ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ Π²Ρ‹Π²ΠΎΠ΄Ρ‹ ΠΎ коэффициСнтах Π°, b ΠΈ с:

Π° > 0, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Π²Π΅Ρ‚Π²ΠΈ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π²Π΅Ρ€Ρ…;

b β‰  0, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Π½Π΅ Π»Π΅ΠΆΠΈΡ‚ Π½Π° оси ОУ;

с = –2, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° пСрСсСкаСт ось ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ (0; –2).

ВсСм этим условиям удовлСтворяСт Ρ‚ΠΎΠ»ΡŒΠΊΠΎ функция Ρƒ = 2Ρ… 2 – 3Ρ… – 2.

На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

По ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½Π½ΠΎΠΌΡƒ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ Π΄Π΅Π»Π°Π΅ΠΌ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ Π²Ρ‹Π²ΠΎΠ΄Ρ‹ ΠΎ коэффициСнтах Π°, b ΠΈ с:

5. По Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρƒ = Π°Ρ… 2 + bΡ… + с ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅ Π·Π½Π°ΠΊΠΈ коэффициСнтов Π°, b ΠΈ с:

Π°) На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΠ±) На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π°) Π’Π΅Ρ‚Π²ΠΈ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π²Π΅Ρ€Ρ…, поэтому Π° > 0.

ΠŸΠ°Ρ€Π°Π±ΠΎΠ»Π° пСрСсСкаСт ось ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π² Π½ΠΈΠΆΠ½Π΅ΠΉ полуплоскости, поэтому с На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. По Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ Ρ‚ 0. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ b > 0.

Π±) Аналогично опрСдСляСм Π·Π½Π°ΠΊΠΈ коэффициСнтов Π°, b ΠΈ с:

Π°) По Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ Π’ΠΈΠ΅Ρ‚Π°, извСстно, Ρ‡Ρ‚ΠΎ Ссли Ρ…1 ΠΈ Ρ…2 – ΠΊΠΎΡ€Π½ΠΈ уравнСния Ρ… 2 +
+ Ρ€Ρ… + q = 0 (Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π½ΡƒΠ»ΠΈ Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ), Ρ‚ΠΎ Ρ…1 Β· Ρ…2 = q ΠΈ Ρ…1 + Ρ…2 = –р. ΠŸΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ, Ρ‡Ρ‚ΠΎ q = 3 Β· 4 = 12 ΠΈ Ρ€ = –(3 + 4) = –7.

Π±) Π’ΠΎΡ‡ΠΊΠ° пСрСсСчСния ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ с осью ОУ даст Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° q, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ q = 6. Если Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ пСрСсСкаСт ось ОΠ₯ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ (2; 0), Ρ‚ΠΎ число 2 являСтся ΠΊΠΎΡ€Π½Π΅ΠΌ уравнСния Ρ… 2 + Ρ€Ρ… + q = 0. ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΡ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ… = 2 Π² это ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ, Ρ‡Ρ‚ΠΎ Ρ€ = –5.

Π²) Π‘Π²ΠΎΠ΅Π³ΠΎ наимСньшСго значСния данная квадратичная функция достигаСт Π² Π²Π΅Ρ€ΡˆΠΈΠ½Π΅ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹, поэтому На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, ΠΎΡ‚ΠΊΡƒΠ΄Π° Ρ€ = –12. По ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρƒ = Ρ… 2 – 12Ρ… + q Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ x = 6 Ρ€Π°Π²Π½ΠΎ 24. ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΡ x = 6 ΠΈ Ρƒ = 24 Π² Π΄Π°Π½Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ, Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ, Ρ‡Ρ‚ΠΎ q = 60.

IV. ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΎΡ‡Π½Π°Ρ Ρ€Π°Π±ΠΎΡ‚Π°.

1. ΠŸΠΎΡΡ‚Ρ€ΠΎΠΉΡ‚Π΅ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρƒ = 2Ρ… 2 + 4Ρ… – 6 ΠΈ Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Π³Ρ€Π°Ρ„ΠΈΠΊ:

Π±) ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Ρƒ > 0 ΠΈ y 2 + 4Ρ…, Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅:

Π±) ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ возрастания ΠΈ убывания Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ;

Π²) ΠΎΠ±Π»Π°ΡΡ‚ΡŒ значСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

3. По Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρƒ = Π°Ρ… 2 + bΡ… + с ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅ Π·Π½Π°ΠΊΠΈ коэффициСнтов Π°, b ΠΈ с:

На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

1. ΠŸΠΎΡΡ‚Ρ€ΠΎΠΉΡ‚Π΅ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρƒ = –х 2 + 2Ρ… + 3 ΠΈ Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Π³Ρ€Π°Ρ„ΠΈΠΊ:

Π±) ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Ρƒ > 0 ΠΈ y 2 + 8Ρ…, Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅:

Π±) ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ возрастания ΠΈ убывания Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ;

Π²) ΠΎΠ±Π»Π°ΡΡ‚ΡŒ значСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

3. По Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρƒ = Π°Ρ… 2 + bΡ… + с ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅ Π·Π½Π°ΠΊΠΈ коэффициСнтов Π°, b ΠΈ с:

На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ На Ρ‡Ρ‚ΠΎ влияСт коэффициСнт b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’ ΠΎ ΠΏ Ρ€ ΠΎ с Ρ‹ Ρƒ Ρ‡ Π° Ρ‰ ΠΈ ΠΌ с я:

– ΠžΠΏΠΈΡˆΠΈΡ‚Π΅ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ построСния ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

– ΠŸΠ΅Ρ€Π΅Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅ свойства Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρƒ = Π°Ρ… 2 + bΡ… + с ΠΏΡ€ΠΈ Π° > 0 ΠΈ ΠΏΡ€ΠΈ Π°

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *