ΠΠ° ΡΡΠΎ Π²Π»ΠΈΡΠ΅Ρ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠ°ΡΠΈΠΊ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ, Π΅Π³ΠΎ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΈ ΡΠΎΡΠΌΡΠ»Ρ
Π‘ΡΠ°ΡΡΡ Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡΡ Π½Π° ΠΏΡΠΎΠ²Π΅ΡΠΊΠ΅ Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈΡΡΠΎΠ² Skysmart.
ΠΡΠ»ΠΈ Π²Ρ Π·Π°ΠΌΠ΅ΡΠΈΠ»ΠΈ ΠΎΡΠΈΠ±ΠΊΡ, ΡΠΎΠΎΠ±ΡΠΈΡΠ΅ ΠΎΠ± ΡΡΠΎΠΌ Π² ΠΎΠ½Π»Π°ΠΉΠ½-ΡΠ°Ρ
(Π² ΠΏΡΠ°Π²ΠΎΠΌ Π½ΠΈΠΆΠ½Π΅ΠΌ ΡΠ³Π»Ρ ΡΠΊΡΠ°Π½Π°).
ΠΠΎΠ½ΡΡΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ
Π€ΡΠ½ΠΊΡΠΈΡ β ΡΡΠΎ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ Β«yΒ» ΠΎΡ Β«xΒ», Π³Π΄Π΅ Β«xΒ» ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ, Π° Β«yΒ» β Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠ°Π΄Π°ΡΡ ΡΡΠ½ΠΊΡΠΈΡ Π·Π½Π°ΡΠΈΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΠΊΠΎΡΠΎΡΡΠΌ ΠΏΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ Π΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ. ΠΠΎΡ, ΠΊΠ°ΠΊΠΈΠΌΠΈ ΡΠΏΠΎΡΠΎΠ±Π°ΠΌΠΈ Π΅Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°Π΄Π°ΡΡ:
ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ β ΡΡΠΎ ΠΎΠ±ΡΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ Π²ΡΠ΅Ρ ΡΠΎΡΠ΅ΠΊ, ΠΊΠΎΠ³Π΄Π° Π²ΠΌΠ΅ΡΡΠΎ Β«xΒ» ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΈ Π½Π°ΠΉΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΡΠΈΡ ΡΠΎΡΠ΅ΠΊ.
ΠΠΎΠ½ΡΡΠΈΠ΅ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠΈΠ½Π΅ΠΉΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ β ΡΡΠΎ ΡΡΠ½ΠΊΡΠΈΡ Π²ΠΈΠ΄Π° y = kx + b, Π³Π΄Π΅ Ρ β Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠ°Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½Π°Ρ, k, b β Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠΈΡΠ»Π°. ΠΡΠΈ ΡΡΠΎΠΌ k β ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ, b β ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ.
ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° b β Π΄Π»ΠΈΠ½Π° ΠΎΡΡΠ΅Π·ΠΊΠ°, ΠΊΠΎΡΠΎΡΡΠΉ ΠΎΡΡΠ΅ΠΊΠ°Π΅Ρ ΠΏΡΡΠΌΠ°Ρ ΠΏΠΎ ΠΎΡΠΈ OY, ΡΡΠΈΡΠ°Ρ ΠΎΡ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° k β ΡΠ³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΏΡΡΠΌΠΎΠΉ ΠΊ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠΌΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΎΡΠΈ OX, ΡΡΠΈΡΠ°Π΅ΡΡΡ ΠΏΡΠΎΡΠΈΠ² ΡΠ°ΡΠΎΠ²ΠΎΠΉ ΡΡΡΠ΅Π»ΠΊΠΈ.
ΠΡΠ»ΠΈ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Ρ , ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡΠΈΡΠ»ΠΈΡΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Ρ.
ΠΠ»Ρ ΡΠ΄ΠΎΠ±ΡΡΠ²Π° ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡΠΎΡΠΌΠ»ΡΡΡ Π² Π²ΠΈΠ΄Π΅ ΡΠ°Π±Π»ΠΈΡΡ:
ΠΡΠ°ΡΠΈΠΊΠΎΠΌ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΡΠΌΠ°Ρ Π»ΠΈΠ½ΠΈΡ. ΠΠ»Ρ Π΅Π³ΠΎ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ Π΄Π²ΡΡ ΡΠΎΡΠ΅ΠΊ, ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΊΠΎΡΠΎΡΡΡ ΡΠ΄ΠΎΠ²Π»Π΅ΡΠ²ΠΎΡΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ.
Π£Π³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΎΡΠ²Π΅ΡΠ°Π΅Ρ Π·Π° ΡΠ³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΏΡΡΠΌΠΎΠΉ, ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ β Π·Π° ΡΠΎΡΠΊΡ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° Ρ ΠΎΡΡΡ ΠΎΡΠ΄ΠΈΠ½Π°Ρ.
ΠΡΠΊΠ²Π΅Π½Π½ΡΠ΅ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ Β«kΒ» ΠΈ Β«bΒ» β ΡΡΠΎ ΡΠΈΡΠ»ΠΎΠ²ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΠ° ΠΈΡ ΠΌΠ΅ΡΡΠ΅ ΠΌΠΎΠ³ΡΡ ΡΡΠΎΡΡΡ Π»ΡΠ±ΡΠ΅ ΡΠΈΡΠ»Π°: ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠ΅, ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΈΠ»ΠΈ Π΄ΡΠΎΠ±ΠΈ.
ΠΠ°Π²Π°ΠΉΡΠ΅ ΠΏΠΎΡΡΠ΅Π½ΠΈΡΡΠ΅ΠΌΡΡ ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ Π΄Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΉ, ΡΠ΅ΠΌΡ ΡΠ°Π²Π½Ρ ΡΠΈΡΠ»ΠΎΠ²ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ Β«kΒ» ΠΈ Β«bΒ».
Π€ΡΠ½ΠΊΡΠΈΡ | ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Β«kΒ» | ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Β«bΒ» |
---|---|---|
y = 2x + 8 | k = 2 | b = 8 |
y = βx + 3 | k = β1 | b = 3 |
y = 1/8x β 1 | k = 1/8 | b = β1 |
y = 0,2x | k = 0,2 | b = 0 |
ΠΠΎΠΆΠ΅Ρ ΠΏΠΎΠΊΠ°Π·Π°ΡΡΡΡ, ΡΡΠΎ Π² ΡΡΠ½ΠΊΡΠΈΠΈ Β«y = 0,2xΒ» Π½Π΅Ρ ΡΠΈΡΠ»ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° Β«bΒ», Π½ΠΎ ΡΡΠΎ Π½Π΅ ΡΠ°ΠΊ. Π Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΎΠ½ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ. Π§ΡΠΎΠ±Ρ Π½Π΅ ΠΏΠΎΠ΄Π΄Π°Π²Π°ΡΡΡΡ ΡΠΎΠΌΠ½Π΅Π½ΠΈΡΠΌ, Π½ΡΠΆΠ½ΠΎ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡΡ: Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠΈΠΏΠ° Β«y = kx + bΒ» Π΅ΡΡΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ Β«kΒ» ΠΈ Β«bΒ».
ΠΡΠ΅ Π½Π΅ ΡΡΡΠ°Π»ΠΈ? ΠΠ·ΡΡΠ°ΡΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΡ Π²Π΅ΡΠ΅Π»Π΅Π΅ Ρ ΠΎΠΏΡΡΠ½ΡΠΌ ΠΏΡΠ΅ΠΏΠΎΠ΄Π°Π²Π°ΡΠ΅Π»Π΅ΠΌ Π½Π° ΠΊΡΡΡΠ°Ρ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ Π² Skysmart!
Π‘Π²ΠΎΠΉΡΡΠ²Π° Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
Π Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ Π΅ΡΡΡ Π°ΠΊΡΠΈΠΎΠΌΠ°: ΡΠ΅ΡΠ΅Π· Π»ΡΠ±ΡΠ΅ Π΄Π²Π΅ ΡΠΎΡΠΊΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΎΠ²Π΅ΡΡΠΈ ΠΏΡΡΠΌΡΡ ΠΈ ΠΏΡΠΈΡΠΎΠΌ ΡΠΎΠ»ΡΠΊΠΎ ΠΎΠ΄Π½Ρ. ΠΡΡ ΠΎΠ΄Ρ ΠΈΠ· ΡΡΠΎΠΉ Π°ΠΊΡΠΈΠΎΠΌΡ ΡΠ»Π΅Π΄ΡΠ΅Ρ: ΡΡΠΎΠ±Ρ ΠΏΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Π²ΠΈΠ΄Π° Β«Ρ = kx + bΒ», Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ Π½Π°ΠΉΡΠΈ Π²ΡΠ΅Π³ΠΎ Π΄Π²Π΅ ΡΠΎΡΠΊΠΈ. Π Π΄Π»Ρ ΡΡΠΎΠ³ΠΎ Π½ΡΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π΄Π²Π° Π·Π½Π°ΡΠ΅Π½ΠΈΡ Ρ , ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΡΡ ΠΈΡ Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈ Π²ΡΡΠΈΡΠ»ΠΈΡΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ y.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΡΡΠΎΠ±Ρ ΠΏΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ y = 1 /3x + 2, ΠΌΠΎΠΆΠ½ΠΎ Π²Π·ΡΡΡ Ρ = 0 ΠΈ Ρ = 3, ΡΠΎΠ³Π΄Π° ΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΡΠΈΡ ΡΠΎΡΠ΅ΠΊ Π±ΡΠ΄ΡΡ ΡΠ°Π²Π½Ρ Ρ = 2 ΠΈ Ρ = 3. ΠΠΎΠ»ΡΡΠΈΠΌ ΡΠΎΡΠΊΠΈ Π (0; 2) ΠΈ Π (3; 3). Π‘ΠΎΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΈΡ ΠΈ ΠΏΠΎΠ»ΡΡΠΈΠΌ ΡΠ°ΠΊΠΎΠΉ Π³ΡΠ°ΡΠΈΠΊ:
Π ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ y = kx + b ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ k ΠΎΡΠ²Π΅ΡΠ°Π΅Ρ Π·Π° Π½Π°ΠΊΠ»ΠΎΠ½ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ:
ΠΡΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡΡΠ΅ΠΌ ΡΠΈΡΡΠ½ΠΎΠΊ. ΠΡΠ΅ Π³ΡΠ°ΡΠΈΠΊΠΈ Π½Π°ΠΊΠ»ΠΎΠ½Π΅Π½Ρ Π²ΠΏΡΠ°Π²ΠΎ, ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ Π²ΠΎ Π²ΡΠ΅Ρ ΡΡΠ½ΠΊΡΠΈΡΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ k Π±ΠΎΠ»ΡΡΠ΅ Π½ΡΠ»Ρ. ΠΡΠΈΡΠ΅ΠΌ, ΡΠ΅ΠΌ Π±ΠΎΠ»ΡΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ k, ΡΠ΅ΠΌ ΠΊΡΡΡΠ΅ ΠΈΠ΄Π΅Ρ ΠΏΡΡΠΌΠ°Ρ.
Π ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ b = 3, ΠΏΠΎΡΡΠΎΠΌΡ Π²ΡΠ΅ Π³ΡΠ°ΡΠΈΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°ΡΡ ΠΎΡΡ OY Π² ΡΠΎΡΠΊΠ΅ (0; 3).
Π ΡΡΠΎΡ ΡΠ°Π· Π²ΠΎ Π²ΡΠ΅Ρ ΡΡΠ½ΠΊΡΠΈΡΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ k ΠΌΠ΅Π½ΡΡΠ΅ Π½ΡΠ»Ρ, ΠΈ Π³ΡΠ°ΡΠΈΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ Π½Π°ΠΊΠ»ΠΎΠ½Π΅Π½Ρ Π²Π»Π΅Π²ΠΎ. Π§Π΅ΠΌ Π±ΠΎΠ»ΡΡΠ΅ k, ΡΠ΅ΠΌ ΠΊΡΡΡΠ΅ ΠΈΠ΄Π΅Ρ ΠΏΡΡΠΌΠ°Ρ.
ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ b ΡΠ°Π²Π΅Π½ ΡΡΠ΅ΠΌ, ΠΈ Π³ΡΠ°ΡΠΈΠΊΠΈ ΡΠ°ΠΊΠΆΠ΅ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°ΡΡ ΠΎΡΡ OY Π² ΡΠΎΡΠΊΠ΅ (0; 3).
Π’Π΅ΠΏΠ΅ΡΡ Π²ΠΎ Π²ΡΠ΅Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ k ΡΠ°Π²Π½Ρ. ΠΠΎΠ»ΡΡΠΈΠ»ΠΈ ΡΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠ΅ ΠΏΡΡΠΌΡΠ΅.
ΠΡΠΈ ΡΡΠΎΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ b ΡΠ°Π·Π»ΠΈΡΠ½Ρ, ΠΈ ΡΡΠΈ Π³ΡΠ°ΡΠΈΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°ΡΡ ΠΎΡΡ OY Π² ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΠΎΡΠΊΠ°Ρ :
ΠΡΡΠΌΡΠ΅ Π±ΡΠ΄ΡΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠΌΠΈ ΡΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° Ρ Π½ΠΈΡ ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡΡ ΡΠ³Π»ΠΎΠ²ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ.
ΠΠΎΠ΄ΡΡΠΎΠΆΠΈΠΌ. ΠΡΠ»ΠΈ ΠΌΡ Π·Π½Π°Π΅ΠΌ Π·Π½Π°ΠΊΠΈ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² k ΠΈ b, ΡΠΎ ΠΌΠΎΠΆΠ΅ΠΌ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΡ, ΠΊΠ°ΠΊ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ y = kx + b.
ΠΡΠ»ΠΈ k 0, ΡΠΎ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ y = kx + b Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊ:
0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc1049363f94987951092.png» style=»height: 600px;»>
ΠΡΠ»ΠΈ k > 0 ΠΈ b > 0, ΡΠΎ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ y = kx + b Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊ:
0 ΠΈ b > 0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc104b2640e6151326286.png» style=»height: 600px;»>
Π’ΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ y = kx + b Ρ ΠΎΡΡΠΌΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ:
Π Π΅ΡΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Ρ Π½Π° Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΡ
Π§ΡΠΎΠ±Ρ ΡΠ΅ΡΠ°ΡΡ Π·Π°Π΄Π°ΡΠΈ ΠΈ ΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊΠΈ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ, Π½ΡΠΆΠ½ΠΎ ΡΠ°ΡΡΡΠΆΠ΄Π°ΡΡ ΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΈ ΠΏΡΠ°Π²ΠΈΠ»Π° Π²ΡΡΠ΅. ΠΠ°Π²Π°ΠΉΡΠ΅ ΠΏΠΎΡΡΠ΅Π½ΠΈΡΡΠ΅ΠΌΡΡ!
ΠΡΠΈΠΌΠ΅Ρ 2. ΠΠ°ΠΏΠΈΡΠ°ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΠΎΠΉ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΠΈ A (1; 1); B (2; 4).
ΠΠΈΠ½Π΅ΠΉΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ Β« y = kx + b Β» ΠΈ Π΅Ρ Π³ΡΠ°ΡΠΈΠΊ
ΠΡΠ΅ΠΆΠ΄Π΅ ΡΠ΅ΠΌ ΠΏΠ΅ΡΠ΅ΠΉΡΠΈ ΠΊ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ Β« y = kx Β» Π²Π½ΠΈΠΌΠ°ΡΠ΅Π»ΡΠ½ΠΎ ΠΈΠ·ΡΡΠΈΡΠ΅ ΡΡΠΎΠΊ
Β«Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΡΡΠ½ΠΊΡΠΈΡ Π² ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅Β» ΠΈ Β«ΠΠ°ΠΊ ΡΠ΅ΡΠ°ΡΡ Π·Π°Π΄Π°ΡΠΈ Π½Π° ΡΡΠ½ΠΊΡΠΈΡΒ».
Π€ΡΠ½ΠΊΡΠΈΡ Π²ΠΈΠ΄Π° Β« y = kx + b Β» Π½Π°Π·ΡΠ²Π°ΡΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠ΅ΠΉ.
ΠΠΌΠ΅ΡΡΠΎ Β« k Β» ΠΈ Β« b Β» ΠΌΠΎΠ³ΡΡ ΡΡΠΎΡΡΡ Π»ΡΠ±ΡΠ΅ ΡΠΈΡΠ»Π° (ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠ΅, ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΈΠ»ΠΈ Π΄ΡΠΎΠ±ΠΈ).
ΠΡΡΠ³ΠΈΠΌΠΈ ΡΠ»ΠΎΠ²Π°ΠΌΠΈ, ΠΌΠΎΠΆΠ½ΠΎ ΡΠΊΠ°Π·Π°ΡΡ, ΡΡΠΎ Β« y = kx + b Β» β ΡΡΠΎ ΡΠ΅ΠΌΠ΅ΠΉΡΡΠ²ΠΎ Π²ΡΠ΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ, Π³Π΄Π΅ Π²ΠΌΠ΅ΡΡΠΎ Β« k Β» ΠΈ Β« b Β» ΡΡΠΎΡΡ ΡΠΈΡΠ»Π°.
ΠΡΠΈΠΌΠ΅ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ ΡΠΈΠΏΠ° Β« y = kx + b Β».
Π€ΡΠ½ΠΊΡΠΈΡ | ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Β« k Β» | ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Β« b Β» | ||||
---|---|---|---|---|---|---|
y = 5x + 3 | k = 5 | b = 3 | ||||
y = βx + 1 | k = β1 | b = 1 | ||||
y =
x β 2 | k =
| b = β2 | ||||
y = 0,5x | k = 0,5 | b = 0 |
ΠΠ±ΡΠ°ΡΠΈΡΠ΅ ΠΎΡΠΎΠ±ΠΎΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° ΡΡΠ½ΠΊΡΠΈΡ Β« y = 0,5x Β» Π² ΡΠ°Π±Π»ΠΈΡΠ΅. Π§Π°ΡΡΠΎ ΡΠΎΠ²Π΅ΡΡΠ°ΡΡ ΠΎΡΠΈΠ±ΠΊΡ ΠΏΡΠΈ ΠΏΠΎΠΈΡΠΊΠ΅ Π² Π½Π΅ΠΉ ΡΠΈΡΠ»ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° Β« b Β».
Π Π°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ Β« y = 0,5x Β», Π½Π΅Π²Π΅ΡΠ½ΠΎ ΡΡΠ²Π΅ΡΠΆΠ΄Π°ΡΡ, ΡΡΠΎ ΡΠΈΡΠ»ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° Β« b Β» Π² ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π΅Ρ.
ΠΠ°ΠΊ ΠΏΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
Β« y = kx + b Β»
ΠΠ· Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ Π²ΡΠΏΠΎΠΌΠ½ΠΈΠΌ Π°ΠΊΡΠΈΠΎΠΌΡ (ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΠ΅, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π½Π΅ ΡΡΠ΅Π±ΡΠ΅Ρ Π΄ΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΡΡΠ²), ΡΡΠΎ ΡΠ΅ΡΠ΅Π· Π»ΡΠ±ΡΠ΅ Π΄Π²Π΅ ΡΠΎΡΠΊΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΎΠ²Π΅ΡΡΠΈ ΠΏΡΡΠΌΡΡ ΠΈ ΠΏΡΠΈΡΠΎΠΌ ΡΠΎΠ»ΡΠΊΠΎ ΠΎΠ΄Π½Ρ.
ΠΡΡ
ΠΎΠ΄Ρ ΠΈΠ· Π°ΠΊΡΠΈΠΎΠΌΡ Π²ΡΡΠ΅ ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ ΡΡΠΎΠ±Ρ ΠΏΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Π²ΠΈΠ΄Π°
Β« Ρ = kx + b Β» Π½Π°ΠΌ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ Π±ΡΠ΄Π΅Ρ Π½Π°ΠΉΡΠΈ Π²ΡΠ΅Π³ΠΎ Π΄Π²Π΅ ΡΠΎΡΠΊΠΈ.
ΠΠ»Ρ ΠΏΡΠΈΠΌΠ΅ΡΠ° ΠΏΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Β« y = β2x + 1 Β».
ΠΠ°ΠΉΠ΄Π΅ΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Β« y Β» Π΄Π»Ρ Π΄Π²ΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Β« x Β». ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, Π²ΠΌΠ΅ΡΡΠΎ Β« x Β» ΡΠΈΡΠ»Π° Β« 0 Β» ΠΈ Β« 1 Β».
ΠΡΠ±ΠΈΡΠ°Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΡΠ΅ ΡΠΈΡΠ»ΠΎΠ²ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π²ΠΌΠ΅ΡΡΠΎ Β« x Β», Π»ΡΡΡΠ΅ Π±ΡΠ°ΡΡ ΡΠΈΡΠ»Π° Β« 0 Β» ΠΈ Β« 1 Β». Π‘ ΡΡΠΈΠΌΠΈ ΡΠΈΡΠ»Π°ΠΌΠΈ Π»Π΅Π³ΠΊΠΎ Π²ΡΠΏΠΎΠ»Π½ΡΡΡ ΡΠ°ΡΡΠ΅ΡΡ.
ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Β« x Β» ΠΈ Β« y Β» β ΡΡΠΎ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠ΅ΠΊ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠ°ΠΏΠΈΡΠ΅ΠΌ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠ΅ΠΊ Β« y = β2x + 1 Β» Π² ΡΠ°Π±Π»ΠΈΡΡ.
Π’ΠΎΡΠΊΠ° | ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΠΏΠΎ ΠΎΡΠΈ Β« Πx Β» (Π°Π±ΡΡΠΈΡΡΠ°) | ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΠΏΠΎ ΠΎΡΠΈ Β« Πy Β» (ΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°) |
---|---|---|
(Β·)A | 0 | 1 |
(Β·)B | 1 | β1 |
ΠΡΠΌΠ΅ΡΠΈΠΌ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠΎΡΠΊΠΈ Π½Π° ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
Π’Π΅ΠΏΠ΅ΡΡ ΠΏΡΠΎΠ²Π΅Π΄Π΅ΠΌ ΠΏΡΡΠΌΡΡ ΡΠ΅ΡΠ΅Π· ΠΎΡΠΌΠ΅ΡΠ΅Π½Π½ΡΠ΅ ΡΠΎΡΠΊΠΈ. ΠΡΠ° ΠΏΡΡΠΌΠ°Ρ Π±ΡΠ΄Π΅Ρ ΡΠ²Π»ΡΡΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ Β« y = β2x + 1 Β».
ΠΠ°ΠΊ ΡΠ΅ΡΠ°ΡΡ Π·Π°Π΄Π°ΡΠΈ Π½Π°
Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΡ Β« y = kx + b Β»
ΠΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Β« y = 2x + 3 Β». ΠΠ°ΠΉΡΠΈ ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ:
ΠΠ½Π°ΡΠ°Π»Π΅ ΠΏΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Β« y = 2x + 3 Β».
ΠΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌ ΠΏΡΠ°Π²ΠΈΠ»Π°, ΠΏΠΎ ΠΊΠΎΡΠΎΡΡΠΌ ΠΌΡ ΡΡΡΠΎΠΈΠ»ΠΈ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Π²ΡΡΠ΅. ΠΠ»Ρ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ Β« y = 2x + 3 Β» Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ Π½Π°ΠΉΡΠΈ Π²ΡΠ΅Π³ΠΎ Π΄Π²Π΅ ΡΠΎΡΠΊΠΈ.
ΠΡΠ±Π΅ΡΠ΅ΠΌ Π΄Π²Π° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΡΡ ΡΠΈΡΠ»ΠΎΠ²ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π΄Π»Ρ Β« x Β». ΠΠ»Ρ ΡΠ΄ΠΎΠ±ΡΡΠ²Π° ΡΠ°ΡΡΠ΅ΡΠΎΠ² Π²ΡΠ±Π΅ΡΠ΅ΠΌ ΡΠΈΡΠ»Π° Β« 0 Β» ΠΈ Β« 1 Β».
ΠΡΠΏΠΎΠ»Π½ΠΈΠΌ ΡΠ°ΡΡΠ΅ΡΡ ΠΈ Π·Π°ΠΏΠΈΡΠ΅ΠΌ ΠΈΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ Π² ΡΠ°Π±Π»ΠΈΡΡ.
Π’ΠΎΡΠΊΠ° | ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΠΏΠΎ ΠΎΡΠΈ Β« Πx Β» | ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΠΏΠΎ ΠΎΡΠΈ Β« Πy Β» |
---|---|---|
(Β·)A | 0 | y(0) = 2 Β· 0 + 3 = 3 |
(Β·)B | 1 | y(1) = 2 Β·1 + 3 = 5 |
ΠΡΠΌΠ΅ΡΠΈΠΌ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠΎΡΠΊΠΈ Π½Π° ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
Π‘ΠΎΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠΎΡΠΊΠΈ ΠΏΡΡΠΌΠΎΠΉ. ΠΡΠΎΠ²Π΅Π΄Π΅Π½Π½Π°Ρ ΠΏΡΡΠΌΠ°Ρ Π±ΡΠ΄Π΅Ρ ΡΠ²Π»ΡΡΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ Β« y = 2x + 3 Β».
Π’Π΅ΠΏΠ΅ΡΡ ΡΠ°Π±ΠΎΡΠ°Π΅ΠΌ Ρ ΠΏΠΎΡΡΡΠΎΠ΅Π½Π½ΡΠΌ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ Β« y = 2x + 3 Β».
Π’Π΅ΠΌΡ Β«ΠΠ°ΠΊ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΈΒ» Ρ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ ΠΌΡ ΡΠΆΠ΅ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΠΎ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π»ΠΈ Π² ΡΡΠΎΠΊΠ΅ Β«ΠΠ°ΠΊ ΡΠ΅ΡΠ°ΡΡ Π·Π°Π΄Π°ΡΠΈ Π½Π° ΡΡΠ½ΠΊΡΠΈΡΒ».
Π ΡΡΠΎΠΌΡ ΡΡΠΎΠΊΠ΅ Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°ΡΠΈ Π²ΡΡΠ΅ Π²ΡΠΏΠΎΠΌΠ½ΠΈΠΌ ΡΠΎΠ»ΡΠΊΠΎ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΌΠΎΠΌΠ΅Π½ΡΡ.
Π§ΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Β« y Β» ΠΏΠΎ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠΌΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Β« x Β» Π½Π° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ:
ΠΠ°ΠΏΠΈΡΠ΅ΠΌ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ Π² ΡΠ°Π±Π»ΠΈΡΡ.
ΠΠ°Π΄Π°Π½Π½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Β« x Β» | ΠΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ΅ Ρ Π³ΡΠ°ΡΠΈΠΊΠ° Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Β« y Β» |
---|---|
β1 | 1 |
2 | 7 |
3 | 9 |
5 | 13 |
ΠΠ°ΠΏΠΈΡΠ΅ΠΌ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ Π² ΡΠ°Π±Π»ΠΈΡΡ.
ΠΠ°Π΄Π°Π½Π½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Β« y Β» | ΠΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ΅ Ρ Π³ΡΠ°ΡΠΈΠΊΠ° Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Β« x Β» |
---|---|
β1 | β2 |
0 | β1,5 |
1 | β1 |
4 | 0,5 |
ΠΠ°ΠΊ ΠΏΡΠΎΠ²Π΅ΡΠΈΡΡ, ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ Π»ΠΈ Π³ΡΠ°ΡΠΈΠΊ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΡ
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π΄ΡΡΠ³ΠΎΠ΅ Π·Π°Π΄Π°Π½ΠΈΠ΅.
Π§ΡΠΎΠ±Ρ ΠΏΡΠΎΠ²Π΅ΡΠΈΡΡ ΠΏΡΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ½ΠΎΡΡΡ ΡΠΎΡΠΊΠΈ Π³ΡΠ°ΡΠΈΠΊΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π΅Ρ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ ΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠΊΠΈ Π² ΡΠΎΡΠΌΡΠ»Ρ ΡΡΠ½ΠΊΡΠΈΠΈ (ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΏΠΎ ΠΎΡΠΈ Β« Ox Β» Π²ΠΌΠ΅ΡΡΠΎ Β« x Β», Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΏΠΎ ΠΎΡΠΈ Β« Oy Β» Π²ΠΌΠ΅ΡΡΠΎ Β« y Β») ΠΈ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ°ΡΡΠ΅ΡΡ.
β2 = 2 Β· 1 β
1 |
3 |
β2 = 2 β
1 |
3 |
β2 = 1
3 |
3 |
β
1 |
3 |
β2 = 1
2 |
3 |
(Π½Π΅Π²Π΅ΡΠ½ΠΎ)
ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° Ρ ΠΎΡΡΠΌΠΈ
ΠΠ°ΠΉΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠ΅ΠΊ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ Β« y = β1,5x + 3 Β» Ρ ΠΎΡΡΠΌΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
ΠΠ»Ρ Π½Π°ΡΠ°Π»Π° ΠΏΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Β« y = β1,5x + 3 Β» ΠΈ Π½Π° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΠΎΡΠΌΠ΅ΡΠΈΠΌ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Ρ ΠΎΡΡΠΌΠΈ.
ΠΠ»Ρ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π΄Π²ΡΡ
ΡΠΎΡΠ΅ΠΊ
ΡΡΠ½ΠΊΡΠΈΠΈ Β« y = β1,5x + 3 Β».
Π’ΠΎΡΠΊΠ° | ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΠΏΠΎ ΠΎΡΠΈ Β« Πx Β» | ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΠΏΠΎ ΠΎΡΠΈ Β« Πy Β» |
---|---|---|
(Β·)A | 0 | y(0) = β1,5 Β· 0 + 3 = 3 |
(Β·)B | 1 | y(1) = β1,5 Β· 1 + 3 = 1,5 |
ΠΡΠΌΠ΅ΡΠΈΠΌ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠΎΡΠΊΠΈ Π½Π° ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΠΈ ΠΏΡΠΎΠ²Π΅Π΄Π΅ΠΌ ΡΠ΅ΡΠ΅Π· Π½ΠΈΡ ΠΏΡΡΠΌΡΡ. Π’Π΅ΠΌ ΡΠ°ΠΌΡΠΌ ΠΌΡ ΠΏΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Β« y = β1,5x + 3 Β».
Π’Π΅ΠΏΠ΅ΡΡ Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠ΅ΠΊ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ Ρ ΠΎΡΡΠΌΠΈ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ ΡΡΠ½ΠΊΡΠΈΠΈ.
Π§ΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ
Ρ ΠΎΡΡΡ Β« Oy Β» (ΠΎΡΡΡ ΠΎΡΠ΄ΠΈΠ½Π°Ρ) Π½ΡΠΆΠ½ΠΎ:
ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ Π²ΠΌΠ΅ΡΡΠΎ Β« x Β» Π² ΡΠΎΡΠΌΡΠ»Ρ ΡΡΠ½ΠΊΡΠΈΠΈ Β« y = β1,5x + 3 Β» ΡΠΈΡΠ»ΠΎ Π½ΠΎΠ»Ρ.
Π§ΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ
Ρ ΠΎΡΡΡ Β« Ox Β» (ΠΎΡΡΡ Π°Π±ΡΡΠΈΡΡ) Π½ΡΠΆΠ½ΠΎ:
ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ Π²ΠΌΠ΅ΡΡΠΎ Β« y Β» Π² ΡΠΎΡΠΌΡΠ»Ρ ΡΡΠ½ΠΊΡΠΈΠΈ Β« y = β1,5x + 3 Β» ΡΠΈΡΠ»ΠΎ Π½ΠΎΠ»Ρ.
Π§ΡΠΎΠ±Ρ Π±ΡΠ»ΠΎ ΠΏΡΠΎΡΠ΅ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡΡ, ΠΊΠ°ΠΊΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠΊΠΈ Π½ΡΠΆΠ½ΠΎ ΠΏΡΠΈΡΠ°Π²Π½ΠΈΠ²Π°ΡΡ ΠΊ Π½ΡΠ»Ρ, Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡΠ΅ Β«ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΡΡΠΈΒ».
ΠΠ°ΠΊ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ a, b ΠΈ c ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ
ΠΡΠ΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, Π²Π°ΠΌ ΠΏΠΎΠΏΠ°Π»ΡΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ \(y=ax^2+bx+c\) ΠΈ Π½ΡΠΆΠ½ΠΎ ΠΏΠΎ ΡΡΠΎΠΌΡ Π³ΡΠ°ΡΠΈΠΊΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ \(a\), \(b\) ΠΈ \(c\). Π ΡΡΠΎΠΉ ΡΡΠ°ΡΡΠ΅ Ρ ΡΠ°ΡΡΠΊΠ°ΠΆΡ 3 ΠΏΡΠΎΡΡΡΡ ΡΠΏΠΎΡΠΎΠ±Π° ΡΠ΄Π΅Π»Π°ΡΡ ΡΡΠΎ.
1 ΡΠΏΠΎΡΠΎΠ± β ΠΈΡΠ΅ΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ Π½Π° Π³ΡΠ°ΡΠΈΠΊΠ΅
ΠΠ°Π½Π½ΡΠΉ ΡΠΏΠΎΡΠΎΠ± Ρ ΠΎΡΠΎΡ, ΠΊΠΎΠ³Π΄Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π²Π΅ΡΡΠΈΠ½Ρ ΠΈ ΡΠΎΡΠΊΠ° ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ Ρ ΠΎΡΡΡ \(y\) β ΡΠ΅Π»ΡΠ΅ ΡΠΈΡΠ»Π°. ΠΡΠ»ΠΈ ΡΡΠΎ Π½Π΅ ΡΠ°ΠΊ, ΡΠΎΠ²Π΅ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΡΠΏΠΎΡΠΎΠ± 2.
ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ \(a\) ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΡ ΡΠ°ΠΊΡΠΎΠ²:
— ΠΡΠ»ΠΈ \(a>0\), ΡΠΎ Π²Π΅ΡΠ²ΠΈ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π½ΡΡ Π²Π²Π΅ΡΡ , Π΅ΡΠ»ΠΈ \(a 1\), ΡΠΎ Π³ΡΠ°ΡΠΈΠΊ Π²ΡΡΡΠ½ΡΡ Π²Π²Π΅ΡΡ Π² \(a\) ΡΠ°Π· ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ Β«Π±Π°Π·ΠΎΠ²ΡΠΌΒ» Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ (Ρ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ \(a=1\)). ΠΠ΅ΡΡΠΈΠ½Π° ΠΏΡΠΈ ΡΡΠΎΠΌ ΠΎΡΡΠ°Π΅ΡΡΡ Π½Π° ΠΌΠ΅ΡΡΠ΅. ΠΡΠΎ Π½Π°Π³Π»ΡΠ΄Π½ΠΎ Π²ΠΈΠ΄Π½ΠΎ ΠΏΠΎ Π²ΡΠ΄Π΅Π»Π΅Π½Π½ΡΠΌ ΡΠΎΡΠΊΠ°ΠΌ.
ΠΡΠ΅ΠΌ 3 ΡΠΎΡΠΊΠΈ Ρ ΡΠ΅Π»ΡΠΌΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°ΠΌΠΈ, ΠΏΡΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°ΡΠΈΠ΅ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Π΅.
ΠΡΠΈΠΌΠ΅Ρ:
ΠΡΠΏΠΈΡΡΠ²Π°Π΅ΠΌ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΡΠΈΡ ΡΠΎΡΠ΅ΠΊ ΠΈ ΠΏΠΎΠ΄ΡΡΠ°Π²Π»ΡΠ΅ΠΌ Π² ΡΠΎΡΠΌΡΠ»Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ: \(y=ax^2+bx+c\). ΠΠΎΠ»ΡΡΠΈΡΡΡ ΡΠΈΡΡΠ΅ΠΌΠ° Ρ ΡΡΠ΅ΠΌΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΠΌΠΈ.
Π Π΅ΡΠ°Π΅ΠΌ ΡΠΈΡΡΠ΅ΠΌΡ.
ΠΡΠΈΠΌΠ΅Ρ:
ΠΡΡΡΠ΅ΠΌ ΠΈΠ· Π²ΡΠΎΡΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠ²ΠΎΠ΅:
ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ \(9a\) Π²ΠΌΠ΅ΡΡΠΎ \(b\):
ΠΠ΅ΡΠ²ΠΎΠ΅ ΠΈ Π²ΡΠΎΡΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠΎΠ²ΠΏΠ°Π»ΠΈ (ΡΡΠΎ Π½ΠΎΡΠΌΠ°Π»ΡΠ½ΠΎ Π΄Π»Ρ ΡΠΎΡΠ΅ΠΊ, ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠ½ΡΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΏΡΡΠΌΠΎΠΉ ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π· Π²Π΅ΡΡΠΈΠ½Ρ β ΠΊΠ°ΠΊ ΡΠΎΡΠΊΠΈ \(A\) ΠΈ \(B\) Π² Π½Π°ΡΠ΅ΠΌ ΡΠ»ΡΡΠ°Π΅), Π½ΠΎ Π½Π°Ρ ΡΡΠΎ Π½Π΅ ΠΎΡΡΠ°Π½ΠΎΠ²ΠΈΡ β ΠΌΡ Π²ΡΡΡΠ΅ΠΌ ΠΈΠ· Π²ΡΠΎΡΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΡΠ΅ΡΡΠ΅:
ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ Π² ΠΏΠ΅ΡΠ²ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ \(a\):
ΠΠΎΠ»ΡΡΠ°Π΅ΡΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ: \(y=-x^2-9x-15\).
Π‘ΡΠ°Π·Ρ Π·Π°ΠΌΠ΅ΡΠΈΠΌ, ΡΡΠΎ ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΠΌΠΎΠΆΠ½ΠΎ ΡΡΠ°Π·Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ, ΡΡΠΎ \(c=4\). ΠΡΠΎ ΡΠΈΠ»ΡΠ½ΠΎ ΠΎΠ±Π»Π΅Π³ΡΠΈΡ Π½Π°ΡΡ ΡΠΈΡΡΠ΅ΠΌΡ β Π½Π°ΠΌ Ρ Π²Π°ΡΠΈΡ 2 ΡΠΎΡΠ΅ΠΊ. ΠΡΠ±Π΅ΡΠ΅ΠΌ ΠΈΡ Π½Π° ΠΏΠ°ΡΠ°Π±ΠΎΠ»Π΅: \(C(-1;8)\), \(D(1;2)\) (Π½Π° ΡΠ°ΠΌΠΎΠΌ Π΄Π΅Π»Π΅, Π΅ΡΠ»ΠΈ ΠΏΡΠΈΡΠΌΠΎΡΡΠ΅ΡΡΡΡ, ΡΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅ΡΠΈΡΡ, ΡΡΠΎ ΡΡΠΈ ΡΠΎΡΠΊΠΈ Π²ΡΠ΄Π΅Π»Π΅Π½Ρ ΠΆΠΈΡΠ½ΠΎ Π½Π° ΠΈΠ·Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΊΠ°ΡΡΠΈΠ½ΠΊΠ΅ β ΡΡΠΎ Π²Π°ΠΌ ΠΏΠΎΠ΄ΡΠΊΠ°Π·ΠΊΠ° ΠΎΡ Π°Π²ΡΠΎΡΠΎΠ² Π·Π°Π΄Π°ΡΠΈ).
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ ΠΈΠΌΠ΅Π΅ΠΌ ΡΠΈΡΡΠ΅ΠΌΡ:
Π‘Π»ΠΎΠΆΠΈΠΌ 2 ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ:
ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ Π²ΠΎ Π²ΡΠΎΡΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
Π’Π΅ΠΏΠ΅ΡΡ Π½Π°ΠΉΠ΄Π΅ΠΌ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π΄Π²ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ:
Π’Π΅ΠΏΠ΅ΡΡ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π²ΡΠΎΡΠΎΠΉ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ:
3 ΡΠΏΠΎΡΠΎΠ± β ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΉ
ΠΡΠΎΡ ΡΠΏΠΎΡΠΎΠ± Π±ΡΡΡΡΠ΅Π΅ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΈ Π±ΠΎΠ»Π΅Π΅ ΡΠ½ΠΈΠ²Π΅ΡΡΠ°Π»ΡΠ½ΡΠΉ, Π² ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ ΠΎΠ½ ΠΌΠΎΠΆΠ΅Ρ ΠΏΡΠΈΠ³ΠΎΠ΄ΠΈΡΡΡ ΠΈ Π² Π·Π°Π΄Π°ΡΠ°Ρ Π½Π° Π΄ΡΡΠ³ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ.
Π‘Π°ΠΌ ΡΠΏΠΎΡΠΎΠ± Π±Π°Π·ΠΈΡΡΠ΅ΡΡΡ Π½Π° ΡΠ»Π΅Π΄ΡΡΡΠΈΡ ΠΈΠ΄Π΅ΡΡ :
ΠΡΠ°ΡΠΈΠΊ \(y=-x^2\) ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠ΅Π½ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΡΠΈ \(x\) Π³ΡΠ°ΡΠΈΠΊΡ \(y=x^2\).
β ΠΡΠ»ΠΈ \(a>1\) Π³ΡΠ°ΡΠΈΠΊ \(y=ax^2\) ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΡΡ ΡΠ°ΡΡΡΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π³ΡΠ°ΡΠΈΠΊΠ° \(y=x^2\) Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ \(y\) Π² \(a\) ΡΠ°Π·.
β ΠΡΠ»ΠΈ \(aβ(0;1)\) Π³ΡΠ°ΡΠΈΠΊ \(y=ax^2\) ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΡΡ ΡΠΆΠ°ΡΠΈΠ΅ΠΌ Π³ΡΠ°ΡΠΈΠΊΠ° \(y=x^2\) Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ \(y\) Π² \(a\) ΡΠ°Π·.
β ΠΡΠ°ΡΠΈΠΊ \(y=a(x+d)^2\) ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΡΡ ΡΠ΄Π²ΠΈΠ³ΠΎΠΌ Π³ΡΠ°ΡΠΈΠΊΠ° \(y=ax^2\) Π²Π»Π΅Π²ΠΎ Π½Π° \(d\) Π΅Π΄ΠΈΠ½ΠΈΡ.
— ΠΡΠ°ΡΠΈΠΊ \(y=a(x-d)^2\) ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΡΡ ΡΠ΄Π²ΠΈΠ³ΠΎΠΌ Π³ΡΠ°ΡΠΈΠΊΠ° \(y=ax^2\) Π²ΠΏΡΠ°Π²ΠΎ Π½Π° \(d\) Π΅Π΄ΠΈΠ½ΠΈΡ.
ΠΡΠ°ΡΠΈΠΊ \(y=a(x+d)^2+e\) ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΡΡ ΠΏΠ΅ΡΠ΅Π½ΠΎΡΠΎΠΌ Π³ΡΠ°ΡΠΈΠΊΠ° \(y=a(x+d)^2\) Π½Π° \(e\) Π΅Π΄ΠΈΠ½ΠΈΡ Π²Π²Π΅ΡΡ
.
ΠΡΠ°ΡΠΈΠΊ \(y=a(x+d)^2-e\) ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΡΡ ΠΏΠ΅ΡΠ΅Π½ΠΎΡΠΎΠΌ Π³ΡΠ°ΡΠΈΠΊΠ° \(y=a(x+d)^2\) Π½Π° \(e\) Π΅Π΄ΠΈΠ½ΠΈΡ Π²Π½ΠΈΠ·.
Π‘Π½Π°ΡΠ°Π»Π° ΡΠΌΠΎΡΡΠΈΠΌ Π½Π° Π΅Ρ ΡΠΎΡΠΌΡ ΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π½ΠΎΡΡΡ Π΅Ρ Π²Π΅ΡΠ²Π΅ΠΉ. ΠΠΈΠ΄ΠΈΠΌ, ΡΡΠΎ ΡΠΎΡΠΌΠ° ΡΡΠ°Π½Π΄Π°ΡΡΠ½Π°Ρ, Π±Π°Π·ΠΎΠ²Π°Ρ ΠΈ Π²Π΅ΡΠ²ΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Ρ Π²Π²Π΅ΡΡ , ΠΏΠΎΡΡΠΎΠΌΡ \(a=1\). Π’ΠΎ Π΅ΡΡΡ ΠΎΠ½Π° ΠΏΠΎΠ»ΡΡΠ΅Π½Π° ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡΠΌΠΈ Π³ΡΠ°ΡΠΈΠΊΠ° Π±Π°Π·ΠΎΠ²ΠΎΠΉ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ \(y=x^2\).
Π ΠΊΠ°ΠΊ Π½Π°Π΄ΠΎ Π±ΡΠ»ΠΎ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ°ΡΡ Π·Π΅Π»Π΅Π½ΡΠΉ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠΎΠ± ΠΏΠΎΠ»ΡΡΠΈΡΡ ΠΎΡΠ°Π½ΠΆΠ΅Π²ΡΠΉ? ΠΠ°Π΄ΠΎ ΡΠ΄Π²ΠΈΠ½ΡΡΡΡΡ Π²ΠΏΡΠ°Π²ΠΎ Π½Π° ΠΏΡΡΡ Π΅Π΄ΠΈΠ½ΠΈΡ ΠΈ Π²Π½ΠΈΠ· Π½Π° \(4\).
Π’ΠΎ Π΅ΡΡΡ Π½Π°ΡΠ° ΡΡΠ½ΠΊΡΠΈΡ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊ: \(y=(x-5)^2-4\).
ΠΠΎΡΠ»Π΅ ΡΠ°ΡΠΊΡΡΡΠΈΡ ΡΠΊΠΎΠ±ΠΎΠΊ ΠΈ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΡ
ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ ΠΈΡΠΊΠΎΠΌΡΡ ΡΠΎΡΠΌΡΠ»Ρ:
Π§ΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ \(f(6)\), Π½Π°Π΄ΠΎ ΡΠ½Π°ΡΠ°Π»Π° ΡΠ·Π½Π°ΡΡ ΡΠΎΡΠΌΡΠ»Ρ ΡΡΠ½ΠΊΡΠΈΠΈ \(f(x)\). ΠΠ°ΠΉΠ΄Π΅ΠΌ Π΅Ρ:
ΠΠ°ΡΠ°Π±ΠΎΠ»Π° ΡΠ°ΡΡΡΠ½ΡΡΠ° Π½Π° \(2\) ΠΈ Π²Π΅ΡΠ²ΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Ρ Π²Π½ΠΈΠ·, ΠΏΠΎΡΡΠΎΠΌΡ \(a=-2\). ΠΠ½ΡΠΌΠΈ ΡΠ»ΠΎΠ²Π°ΠΌΠΈ, ΠΏΠ΅ΡΠ²ΠΎΠ½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ, ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ°Π΅ΠΌΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠ΅ΠΉ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΡΠ½ΠΊΡΠΈΡ \(y=-2x^2\).
ΠΠ°ΡΠ°Π±ΠΎΠ»Π° ΡΠΌΠ΅ΡΠ΅Π½Π° Π½Π° 2 ΠΊΠ»Π΅ΡΠΎΡΠΊΠΈ Π²ΠΏΡΠ°Π²ΠΎ, ΠΏΠΎΡΡΠΎΠΌΡ \(y=-2(x-2)^2\).
ΠΠ°ΡΠ°Π±ΠΎΠ»Π° ΠΏΠΎΠ΄Π½ΡΡΠ° Π½Π° 4 ΠΊΠ»Π΅ΡΠΎΡΠΊΠΈ Π²Π²Π΅ΡΡ , ΠΏΠΎΡΡΠΎΠΌΡ \(y=-2(x-2)^2+4\).
ΠΠ° ΡΡΠΎ Π²Π»ΠΈΡΠ΅Ρ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ b Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠ΅ΠΉ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΡΠ½ΠΊΡΠΈΡ Π²ΠΈΠ΄Π° y = kx + b, Π·Π°Π΄Π°Π½Π½Π°Ρ Π½Π° ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅ Π²ΡΠ΅Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΡΠΈΡΠ΅Π». ΠΠ΄Π΅ΡΡ k β ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ (Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ), b β ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΠΉ ΡΠ»Π΅Π½ (Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ), x β Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠ°Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½Π°Ρ.
Π ΡΠ°ΡΡΠ½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅, Π΅ΡΠ»ΠΈ k = 0, ΠΏΠΎΠ»ΡΡΠΈΠΌ ΠΏΠΎΡΡΠΎΡΠ½Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΡ y = b, Π³ΡΠ°ΡΠΈΠΊ ΠΊΠΎΡΠΎΡΠΎΠΉ Π΅ΡΡΡ ΠΏΡΡΠΌΠ°Ρ, ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Π°Ρ ΠΎΡΠΈ Ox, ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠ°Ρ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΡ Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°ΠΌΠΈ (0; b).
ΠΡΠ»ΠΈ b = 0, ΡΠΎ ΠΏΠΎΠ»ΡΡΠΈΠΌ ΡΡΠ½ΠΊΡΠΈΡ y = kx, ΠΊΠΎΡΠΎΡΠ°Ρ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΡΠΌΠΎΠΉ ΠΏΡΠΎΠΏΠΎΡΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΡΡΡΡ.
ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° b β Π΄Π»ΠΈΠ½Π° ΠΎΡΡΠ΅Π·ΠΊΠ°, ΠΊΠΎΡΠΎΡΡΠΉ ΠΎΡΡΠ΅ΠΊΠ°Π΅Ρ ΠΏΡΡΠΌΠ°Ρ ΠΏΠΎ ΠΎΡΠΈ Oy, ΡΡΠΈΡΠ°Ρ ΠΎΡ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° k β ΡΠ³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΏΡΡΠΌΠΎΠΉ ΠΊ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠΌΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΎΡΠΈ Ox, ΡΡΠΈΡΠ°Π΅ΡΡΡ ΠΏΡΠΎΡΠΈΠ² ΡΠ°ΡΠΎΠ²ΠΎΠΉ ΡΡΡΠ΅Π»ΠΊΠΈ.
Π‘Π²ΠΎΠΉΡΡΠ²Π° Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ:
1) ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π΅ΡΡΡ Π²ΡΡ Π²Π΅ΡΠ΅ΡΡΠ²Π΅Π½Π½Π°Ρ ΠΎΡΡ;
2) ΠΡΠ»ΠΈ k β 0, ΡΠΎ ΠΎΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π΅ΡΡΡ Π²ΡΡ Π²Π΅ΡΠ΅ΡΡΠ²Π΅Π½Π½Π°Ρ ΠΎΡΡ. ΠΡΠ»ΠΈ k = 0, ΡΠΎ ΠΎΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠΎΡΡΠΎΠΈΡ ΠΈΠ· ΡΠΈΡΠ»Π° b;
3) Π§Π΅ΡΠ½ΠΎΡΡΡ ΠΈ Π½Π΅ΡΠ΅ΡΠ½ΠΎΡΡΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π·Π°Π²ΠΈΡΡΡ ΠΎΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² k ΠΈ b.
a) b β 0, k = 0, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, y = b β ΡΠ΅ΡΠ½Π°Ρ;
b) b = 0, k β 0, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ y = kx β Π½Π΅ΡΠ΅ΡΠ½Π°Ρ;
c) b β 0, k β 0, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ y = kx + b β ΡΡΠ½ΠΊΡΠΈΡ ΠΎΠ±ΡΠ΅Π³ΠΎ Π²ΠΈΠ΄Π°;
d) b = 0, k = 0, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ y = 0 β ΠΊΠ°ΠΊ ΡΠ΅ΡΠ½Π°Ρ, ΡΠ°ΠΊ ΠΈ Π½Π΅ΡΠ΅ΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ.
4) Π‘Π²ΠΎΠΉΡΡΠ²ΠΎΠΌ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½ΠΎΡΡΠΈ Π»ΠΈΠ½Π΅ΠΉΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ Π½Π΅ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ;
5) Π’ΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Ρ ΠΎΡΡΠΌΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ:
Oy: y = 0k + b = b, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ (0; b) β ΡΠΎΡΠΊΠ° ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Ρ ΠΎΡΡΡ ΠΎΡΠ΄ΠΈΠ½Π°Ρ.
ΠΠ°ΠΌΠ΅ΡΠ°Π½ΠΈΠ΅.ΠΡΠ»ΠΈ b = 0 ΠΈ k = 0, ΡΠΎ ΡΡΠ½ΠΊΡΠΈΡ y = 0 ΠΎΠ±ΡΠ°ΡΠ°Π΅ΡΡΡ Π² Π½ΠΎΠ»Ρ ΠΏΡΠΈ Π»ΡΠ±ΠΎΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ Ρ . ΠΡΠ»ΠΈ b β 0 ΠΈ k = 0, ΡΠΎ ΡΡΠ½ΠΊΡΠΈΡ y = b Π½Π΅ ΠΎΠ±ΡΠ°ΡΠ°Π΅ΡΡΡ Π² Π½ΠΎΠ»Ρ Π½ΠΈ ΠΏΡΠΈ ΠΊΠ°ΠΊΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ Ρ .
6) ΠΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π·Π½Π°ΠΊΠΎΠΏΠΎΡΡΠΎΡΠ½ΡΡΠ²Π° Π·Π°Π²ΠΈΡΡΡ ΠΎΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° k.
y = kx + b β ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½Π° ΠΏΡΠΈ x ΠΈΠ· (-b/k; +β),
b) k 0; y = kx + b ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½Π° Π½Π° Π²ΡΠ΅ΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ,
k = 0, b 0, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ y = kx + b Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π΅Ρ Π½Π° Π²ΡΠ΅ΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ,
ΠΠΠΠ―ΠΠΠ ΠΠΠΠ€Π€ΠΠ¦ΠΠΠΠ’ΠΠ Π°, b ΠΈ Ρ ΠΠ Π ΠΠ‘ΠΠΠΠΠΠΠΠΠ ΠΠ ΠΠ€ΠΠΠ ΠΠΠΠΠ ΠΠ’ΠΠ§ΠΠΠ Π€Π£ΠΠΠ¦ΠΠ
ΠΠ½Π»Π°ΠΉΠ½-ΠΊΠΎΠ½ΡΠ΅ΡΠ΅Π½ΡΠΈΡ
Β«Π‘ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½Π°Ρ ΠΏΡΠΎΡΠΎΡΠΈΠ΅Π½ΡΠ°ΡΠΈΡ ΠΏΠ΅Π΄Π°Π³ΠΎΠ³ΠΎΠ²
ΠΈ ΡΠΎΠ΄ΠΈΡΠ΅Π»Π΅ΠΉ, ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Ρ ΡΡΠ½ΠΊΠ° ΡΡΡΠ΄Π°
ΠΈ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ Π»ΠΈΡΠ½ΠΎΡΡΠΈ ΠΏΠΎΠ΄ΡΠΎΡΡΠΊΠ°Β»
Π‘Π²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΠΎ ΠΈ ΡΠΊΠΈΠ΄ΠΊΠ° Π½Π° ΠΎΠ±ΡΡΠ΅Π½ΠΈΠ΅ ΠΊΠ°ΠΆΠ΄ΠΎΠΌΡ ΡΡΠ°ΡΡΠ½ΠΈΠΊΡ
Π£ Ρ ΠΎ ΠΊ 15.
ΠΠ»ΠΈΡΠ½ΠΈΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² Π°, b ΠΈ Ρ Π½Π° ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅
Π³ΡΠ°ΡΠΈΠΊΠ° ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
Π¦Π΅Π»ΠΈ: ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠΈΡΡ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠΌΠ΅Π½ΠΈΡ ΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈ ΠΏΠ΅ΡΠ΅ΡΠΈΡΠ»ΡΡΡ Π΅Π΅ ΡΠ²ΠΎΠΉΡΡΠ²Π°; Π²ΡΡΠ²ΠΈΡΡ Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² Π°, b ΠΈ Ρ Π½Π° ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ.
I. ΠΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΎΠ½Π½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ.
ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅, Π³ΡΠ°ΡΠΈΠΊ ΠΊΠ°ΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅:
Π±)
Ρ = Ρ 2 β 2Ρ ;
Ρ = β Ρ 2 + 4Ρ + 1;
Ρ = β Ρ 2 + 2Ρ β 1.
III. Π€ΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠΌΠ΅Π½ΠΈΠΉ ΠΈ Π½Π°Π²ΡΠΊΠΎΠ².
ΠΡΡΠΌΠ°Ρ Ρ = 6Ρ + b ΠΊΠ°ΡΠ°Π΅ΡΡΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ Ρ = Ρ 2 + 8, ΡΠΎ Π΅ΡΡΡ ΠΈΠΌΠ΅Π΅Ρ Ρ Π½Π΅ΠΉ ΡΠΎΠ»ΡΠΊΠΎ ΠΎΠ΄Π½Ρ ΠΎΠ±ΡΡΡ ΡΠΎΡΠΊΡ Π² ΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅, ΠΊΠΎΠ³Π΄Π° ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ 6Ρ + b = Ρ 2 + 8 Π±ΡΠ΄Π΅Ρ ΠΈΠΌΠ΅ΡΡ Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½ΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅.
ΠΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΌ, Π½Π°ΠΉΠ΄Π΅ΠΌ Π΅Π³ΠΎ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ:
3. ΠΡΡΠ²ΠΈΡΡ Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² Π°, b ΠΈ Ρ Π½Π° ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ Ρ = Π°Ρ 2 + bΡ + Ρ.
Π£ΡΠ°ΡΠΈΠ΅ΡΡ ΠΎΠ±Π»Π°Π΄Π°ΡΡ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΡΠΌΠΈ Π·Π½Π°Π½ΠΈΡΠΌΠΈ, ΡΡΠΎΠ±Ρ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ ΡΡΠΎ Π·Π°Π΄Π°Π½ΠΈΠ΅ ΡΠ°ΠΌΠΎΡΡΠΎΡΡΠ΅Π»ΡΠ½ΠΎ. Π‘Π»Π΅Π΄ΡΠ΅Ρ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠΈΡΡ ΠΈΠΌ Π²ΡΠ΅ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π²ΡΠ²ΠΎΠ΄Ρ Π·Π°Π½Π΅ΡΡΠΈ Π² ΡΠ΅ΡΡΠ°Π΄Ρ, ΠΏΡΠΈ ΡΡΠΎΠΌ Π²ΡΠ΄Π΅Π»ΠΈΠ² Β«ΠΎΡΠ½ΠΎΠ²Π½ΡΡΒ» ΡΠΎΠ»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ².
1) ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π° Π²Π»ΠΈΡΠ΅Ρ Π½Π° Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΡΠ²Π΅ΠΉ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ: ΠΏΡΠΈ Π° > 0 β Π²Π΅ΡΠ²ΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Ρ Π²Π²Π΅ΡΡ , ΠΏΡΠΈ Π° , ΡΠ°ΠΊ ΠΊΠ°ΠΊ Π° 0.
4. ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅, Π³ΡΠ°ΡΠΈΠΊ ΠΊΠ°ΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅, ΠΎΠΏΠΈΡΠ°ΡΡΡ Π½Π° Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² Π°, b ΠΈ Ρ.
Ρ = Ρ 2 + 2Ρ + 2;
ΠΠΎ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Π½ΠΎΠΌΡ Π³ΡΠ°ΡΠΈΠΊΡ Π΄Π΅Π»Π°Π΅ΠΌ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ Π²ΡΠ²ΠΎΠ΄Ρ ΠΎ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ°Ρ Π°, b ΠΈ Ρ:
Π° > 0, ΡΠ°ΠΊ ΠΊΠ°ΠΊ Π²Π΅ΡΠ²ΠΈ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Ρ Π²Π²Π΅ΡΡ ;
b β 0, ΡΠ°ΠΊ ΠΊΠ°ΠΊ Π²Π΅ΡΡΠΈΠ½Π° ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ Π½Π΅ Π»Π΅ΠΆΠΈΡ Π½Π° ΠΎΡΠΈ ΠΠ£;
Ρ = β2, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Π° ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°Π΅Ρ ΠΎΡΡ ΠΎΡΠ΄ΠΈΠ½Π°Ρ Π² ΡΠΎΡΠΊΠ΅ (0; β2).
ΠΡΠ΅ΠΌ ΡΡΠΈΠΌ ΡΡΠ»ΠΎΠ²ΠΈΡΠΌ ΡΠ΄ΠΎΠ²Π»Π΅ΡΠ²ΠΎΡΡΠ΅Ρ ΡΠΎΠ»ΡΠΊΠΎ ΡΡΠ½ΠΊΡΠΈΡ Ρ = 2Ρ 2 β 3Ρ β 2.
ΠΠΎ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Π½ΠΎΠΌΡ Π³ΡΠ°ΡΠΈΠΊΡ Π΄Π΅Π»Π°Π΅ΠΌ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ Π²ΡΠ²ΠΎΠ΄Ρ ΠΎ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ°Ρ Π°, b ΠΈ Ρ:
5. ΠΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΡΡΠ½ΠΊΡΠΈΠΈ Ρ = Π°Ρ 2 + bΡ + Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅ Π·Π½Π°ΠΊΠΈ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² Π°, b ΠΈ Ρ:
Π°) Π±)
Π°) ΠΠ΅ΡΠ²ΠΈ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Ρ Π²Π²Π΅ΡΡ , ΠΏΠΎΡΡΠΎΠΌΡ Π° > 0.
ΠΠ°ΡΠ°Π±ΠΎΠ»Π° ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°Π΅Ρ ΠΎΡΡ ΠΎΡΠ΄ΠΈΠ½Π°Ρ Π² Π½ΠΈΠΆΠ½Π΅ΠΉ ΠΏΠΎΠ»ΡΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ, ΠΏΠΎΡΡΠΎΠΌΡ Ρ . ΠΠΎ Π³ΡΠ°ΡΠΈΠΊΡ Π²ΠΈΠ΄Π½ΠΎ, ΡΡΠΎ Ρ 0. ΠΠΎΡΡΠΎΠΌΡ b > 0.
Π±) ΠΠ½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΠΌ Π·Π½Π°ΠΊΠΈ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² Π°, b ΠΈ Ρ:
Π°) ΠΠΎ ΡΠ΅ΠΎΡΠ΅ΠΌΠ΅ ΠΠΈΠ΅ΡΠ°, ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ, ΡΡΠΎ Π΅ΡΠ»ΠΈ Ρ
1 ΠΈ Ρ
2 β ΠΊΠΎΡΠ½ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ
2 +
+ ΡΡ
+ q = 0 (ΡΠΎ Π΅ΡΡΡ Π½ΡΠ»ΠΈ Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ), ΡΠΎ Ρ
1 Β· Ρ
2 = q ΠΈ Ρ
1 + Ρ
2 = βΡ. ΠΠΎΠ»ΡΡΠ°Π΅ΠΌ, ΡΡΠΎ q = 3 Β· 4 = 12 ΠΈ Ρ = β(3 + 4) = β7.
Π±) Π’ΠΎΡΠΊΠ° ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ Ρ ΠΎΡΡΡ ΠΠ£ Π΄Π°ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ° q, ΡΠΎ Π΅ΡΡΡ q = 6. ΠΡΠ»ΠΈ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°Π΅Ρ ΠΎΡΡ ΠΠ₯ Π² ΡΠΎΡΠΊΠ΅ (2; 0), ΡΠΎ ΡΠΈΡΠ»ΠΎ 2 ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΊΠΎΡΠ½Π΅ΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ 2 + ΡΡ + q = 0. ΠΠΎΠ΄ΡΡΠ°Π²Π»ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Ρ = 2 Π² ΡΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅, ΠΏΠΎΠ»ΡΡΠΈΠΌ, ΡΡΠΎ Ρ = β5.
Π²) Π‘Π²ΠΎΠ΅Π³ΠΎ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π΄Π°Π½Π½Π°Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ Π΄ΠΎΡΡΠΈΠ³Π°Π΅Ρ Π² Π²Π΅ΡΡΠΈΠ½Π΅ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ, ΠΏΠΎΡΡΠΎΠΌΡ , ΠΎΡΠΊΡΠ΄Π° Ρ = β12. ΠΠΎ ΡΡΠ»ΠΎΠ²ΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Ρ = Ρ 2 β 12Ρ + q Π² ΡΠΎΡΠΊΠ΅ x = 6 ΡΠ°Π²Π½ΠΎ 24. ΠΠΎΠ΄ΡΡΠ°Π²Π»ΡΡ x = 6 ΠΈ Ρ = 24 Π² Π΄Π°Π½Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΡ, Π½Π°Ρ ΠΎΠ΄ΠΈΠΌ, ΡΡΠΎ q = 60.
IV. ΠΡΠΎΠ²Π΅ΡΠΎΡΠ½Π°Ρ ΡΠ°Π±ΠΎΡΠ°.
1. ΠΠΎΡΡΡΠΎΠΉΡΠ΅ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Ρ = 2Ρ 2 + 4Ρ β 6 ΠΈ Π½Π°ΠΉΠ΄ΠΈΡΠ΅, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ Π³ΡΠ°ΡΠΈΠΊ:
Π±) ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ, Π² ΠΊΠΎΡΠΎΡΡΡ Ρ > 0 ΠΈ y 2 + 4Ρ , Π½Π°ΠΉΠ΄ΠΈΡΠ΅:
Π±) ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΡ ΠΈ ΡΠ±ΡΠ²Π°Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ;
Π²) ΠΎΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ.
3. ΠΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΡΡΠ½ΠΊΡΠΈΠΈ Ρ = Π°Ρ 2 + bΡ + Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅ Π·Π½Π°ΠΊΠΈ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² Π°, b ΠΈ Ρ:
1. ΠΠΎΡΡΡΠΎΠΉΡΠ΅ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Ρ = βΡ 2 + 2Ρ + 3 ΠΈ Π½Π°ΠΉΠ΄ΠΈΡΠ΅, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ Π³ΡΠ°ΡΠΈΠΊ:
Π±) ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ, Π² ΠΊΠΎΡΠΎΡΡΡ Ρ > 0 ΠΈ y 2 + 8Ρ , Π½Π°ΠΉΠ΄ΠΈΡΠ΅:
Π±) ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΡ ΠΈ ΡΠ±ΡΠ²Π°Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ;
Π²) ΠΎΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ.
3. ΠΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΡΡΠ½ΠΊΡΠΈΠΈ Ρ = Π°Ρ 2 + bΡ + Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅ Π·Π½Π°ΠΊΠΈ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² Π°, b ΠΈ Ρ:
Π ΠΎ ΠΏ Ρ ΠΎ Ρ Ρ Ρ Ρ Π° Ρ ΠΈ ΠΌ Ρ Ρ:
β ΠΠΏΠΈΡΠΈΡΠ΅ Π°Π»Π³ΠΎΡΠΈΡΠΌ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ.
β ΠΠ΅ΡΠ΅ΡΠΈΡΠ»ΠΈΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΡΡΠ½ΠΊΡΠΈΠΈ Ρ = Π°Ρ 2 + bΡ + Ρ ΠΏΡΠΈ Π° > 0 ΠΈ ΠΏΡΠΈ Π°